ﻻ يوجد ملخص باللغة العربية
This paper introduces progressive algorithms for the topological analysis of scalar data. Our approach is based on a hierarchical representation of the input data and the fast identification of topologically invariant vertices, which are vertices that have no impact on the topological description of the data and for which we show that no computation is required as they are introduced in the hierarchy. This enables the definition of efficient coarse-to-fine topological algorithms, which leverage fast update mechanisms for ordinary vertices and avoid computation for the topologically invariant ones. We demonstrate our approach with two examples of topological algorithms (critical point extraction and persistence diagram computation), which generate interpretable outputs upon interruption requests and which progressively refine them otherwise. Experiments on real-life datasets illustrate that our progressive strategy, in addition to the continuous visual feedback it provides, even improves run time performance with regard to non-progressive algorithms and we describe further accelerations with shared-memory parallelism. We illustrate the utility of our approach in batch-mode and interactive setups, where it respectively enables the control of the execution time of complete topological pipelines as well as previews of the topological features found in a dataset, with progressive updates delivered within interactive times.
This paper presents an efficient algorithm for the progressive approximation of Wasserstein barycenters of persistence diagrams, with applications to the visual analysis of ensemble data. Given a set of scalar fields, our approach enables the computa
This paper presents a novel technique for progressive online integration of uncalibrated image sequences with substantial geometric and/or photometric discrepancies into a single, geometrically and photometrically consistent image. Our approach can h
Mesh-based learning is one of the popular approaches nowadays to learn shapes. The most established backbone in this field is MeshCNN. In this paper, we propose infusing MeshCNN with geometric reasoning to achieve higher quality learning. Through car
We present MeshODE, a scalable and robust framework for pairwise CAD model deformation without prespecified correspondences. Given a pair of shapes, our framework provides a novel shape feature-preserving mapping function that continuously deforms on
Numerical computation of shortest paths or geodesics on curved domains, as well as the associated geodesic distance, arises in a broad range of applications across digital geometry processing, scientific computing, computer graphics, and computer vis