ﻻ يوجد ملخص باللغة العربية
We study random dense packings of Heisenberg dipoles by numerical simulation. The dipoles are at the centers of identical spheres that occupy fixed random positions in space and fill a fraction $Phi$ of the spatial volume. The parameter $Phi$ ranges from rather low values, typical of amorphous ensembles, to the maximum $Phi$=0.64 that occurs in the random-close-packed limit. We assume that the dipoles can freely rotate and have no local anisotropies. As well as the usual thermodynamical variables, the physics of such systems depends on $Phi$. Concretely, we explore the magnetic ordering of these systems in order to depict the phase diagram in the temperature-$Phi$ plane. For $Phi gtrsim0.49$ we find quasi-long-range ferromagnetic order coexisting with strong long-range spin-glass order. For $Phi lesssim0.49$ the ferromagnetic order disappears giving way to a spin-glass phase similar to the ones found for Ising dipolar systems with strong frozen disorder.
Using tempered Monte Carlo simulations, we study the the spin-glass phase of dense packings of Ising dipoles pointing along random axes. We consider systems of L^3 dipoles (a) placed on the sites of a simple cubic lattice with lattice constant $d$, (
In dense, static, polydisperse granular media under isotropic pressure, the probability density and the correlations of particle-wall contact forces are studied. Furthermore, the probability density functions of the populations of pressures measured
We study partially occupied lattice systems of classical magnetic dipoles which point along randomly oriented axes. Only dipolar interactions are taken into account. The aim of the model is to mimic collective effects in disordered assemblies of magn
We study the ordering statistics of 4 random walkers on the line, obtaining a much improved estimate for the long-time decay exponent of the probability that a particle leads to time $t$; $P_{rm lead}(t)sim t^{-0.91287850}$, and that a particle lags
We investigate two complementary problems related to maintaining the relative positions of N random walks on the line: (i) the leader problem, that is, the probability {cal L}_N(t) that the leftmost particle remains the leftmost as a function of time