ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-local SPDE limits of spatially-correlated-noise driven spin systems derived to sample a canonical distribution

111   0   0.0 ( 0 )
 نشر من قبل Jeremy Marzuola
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the macroscopic behavior of a stochastic spin ensemble driven by a discrete Markov jump process motivated by the Metropolis-Hastings algorithm where the proposal is made with spatially correlated (colored) noise, and hence fails to be symmetric. However, we demonstrate a scenario where the failure of proposal symmetry is a higher order effect. Hence, from these microscopic dynamics we derive as a limit as the proposal size goes to zero and the number of spins to infinity, a non-local stochastic version of the harmonic map heat flow (or overdamped Landau-Lipshitz equation). The equation is both mathematically well-posed and samples the canonical/Gibbs distribution related to the kinetic energy. The failure of proposal symmetry due to interaction between the confining geometry of the spin system and the colored noise is in contrast to the uncorrelated, white-noise, driven system. Specifically, the choice of projection of the noise to conserve the magnitude of the spins is crucial to maintaining the proper equilibrium distribution. Numerical simulations are included to verify convergence properties and demonstrate the dynamics.



قيم البحث

اقرأ أيضاً

Dynamics of a system that performs a large fluctuation to a given state is essentially deterministic: the distribution of fluctuational paths peaks sharply at a certain optimal path along which the system is most likely to move. For the general case of a system driven by colored Gaussian noise, we provide a formulation of the variational problem for optimal paths. We also consider the prehistory problem, which makes it possible to analyze the shape of the distribution of fluctuational paths that arrive at a given state. We obtain, and solve in the limiting case, a set of linear equations for the characteristic width of this distribution.
We study the random processes with non-local memory and obtain new solutions of the Mori-Zwanzig equation describing non-markovian systems. We analyze the system dynamics depending on the amplitudes $ u$ and $mu_0$ of the local and non-local memory a nd pay attention to the line in the ($ u$, $mu_0$)-plane separating the regions with asymptotically stationary and non-stationary behavior. We obtain general equations for such boundaries and consider them for three examples of the non-local memory functions. We show that there exist two types of the boundaries with fundamentally different system dynamics. On the boundaries of the first type, the diffusion with memory takes place, whereas on borderlines of the second type, the phenomenon of noise-induced resonance can be observed. A distinctive feature of noise-induced resonance in the systems under consideration is that it occurs in the absence of an external regular periodic force. It takes place due to the presence of frequencies in the noise spectrum, which are close to the self-frequency of the system. We analyze also the variance of the process and compare its behavior for regions of asymptotic stationarity and non-stationarity, as well as for diffusive and noise-induced-resonance borderlines between them.
We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the local Hilbert space dimension $N$ is la rge. First, the correlators are given by sums over stacked planar diagrams which are completely determined by the spectra of the individual interactions and a dependency graph encoding the locality in the system. We then introduce heap freeness as a generalization of free independence, leading to a second practical method to evaluate the correlators. Finally, we generalize the cumulant expansion to a sum over dependency partitions, providing the third and most succinct of our methods. Our results provide tools to study dynamics and correlations within extended quantum many-body systems which conserve energy. We further apply the formalism to show that quantum satisfiability at large-$N$ is determined by the evaluation of the independence polynomial on a wide class of graphs.
We study the non-Markovian random continuous processes described by the Mori-Zwanzig equation. As a starting point, we use the Markovian Gaussian Ornstein-Uhlenbeck process and introduce an integral memory term depending on the past of the process in to expression for the higher-order transition probability function and stochastic differential equation. We show that the proposed processes can be considered as continuous-time interpolations of discrete-time higher-order autoregressive sequences. An equation connecting the memory function (the kernel of integral term) and the two-point correlation function is obtained. A condition for stationarity of the process is established. We suggest a method to generate stationary continuous stochastic processes with prescribed pair correlation function. As illustration, some examples of numerical simulation of the processes with non-local memory are presented.
256 - L. Chiarini , C. Landim 2019
We examine in this article the one-dimensional, non-local, singular SPDE begin{equation*} partial_t u ;=; -, (-Delta)^{1/2} u ,-, sinh(gamma u) ,+, xi;, end{equation*} where $gammain mathbb{R}$, $(-Delta)^{1/2}$ is the fractional Laplacian of order $ 1/2$, $xi$ the space-time white noise in $mathbb{R} times mathbb{T}$, and $mathbb{T}$ the one-dimensional torus. We show that for $0<gamma^2<pi/7$ the Da Prato--Debussche method applies. One of the main difficulties lies in the derivation of a Schauder estimate for the semi-group associated to the fractional Laplacian due to the lack of smoothness resulting from the long range interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا