ترغب بنشر مسار تعليمي؟ اضغط هنا

Methods for detecting Order-by-Disorder transitions: the example of the Domino model

450   0   0.0 ( 0 )
 نشر من قبل Leticia Cugliandolo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detecting the zero-temperature thermal Order-by-Disorder transition in classical magnetic systems is notably difficult. We propose a method to probe this transition in an indirect way. The idea is to apply adequate magnetic fields to transform the zero temperature transition into a finite temperature sharp crossover, which should be much easier to observe and characterise with usual laboratory methods.



قيم البحث

اقرأ أيضاً

We prove that for quantum lattice systems in d<=2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T=0. For systems with continuo us symmetry the statement extends up to d<=4 dimensions. This establishes for quantum systems the existence of the Imry-Ma phenomenon which for classical systems was proven by Aizenman and Wehr. The extension of the proof to quantum systems is achieved by carrying out the analysis at the level of thermodynamic quantities rather than equilibrium states.
We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and rea ct when they appear at the neighbouring sites, provided that some reactive conditions are fulfilled. We model the latter in two different ways: In the Model I some fraction $p$ of the {em bonds} connecting neighbouring sites possesses special catalytic properties such that any two $A$s appearing on the sites connected by such a bond instantaneously react and desorb. In the Model II some fraction $p$ of the adsorption {em sites} possesses such properties and neighbouring particles react if at least one of them resides on a catalytic site. For the case of textit{annealed} disorder in the distribution of the catalyst, which is tantamount to the situation when the reaction may take place at any point on the lattice but happens with a finite probability $p$, we provide an exact solution for both models for the interior of an infinitely large Cayley tree - the so-called Bethe lattice. We show that both models exhibit a rich critical behaviour: For the annealed Model I it is characterised by a transition into an ordered state and a re-entrant transition into a disordered phase, which both are continuous. For the annealed Model II, which represents a rather exotic model of statistical mechanics in which interactions of any particle with its environment have a peculiar Boolean form, the transition to an ordered state is always continuous, while the re-entrant transition into the disordered phase may be either continuous or discontinuous, depending on the value of $p$.
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b ut manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.
Using analytic and numerical methods, we study a $2d$ Hamiltonian model of interacting particles carrying ferro-magnetically coupled continuous spins which are also locally coupled to their own velocities. This model has been characterised at the mea n field level in a parent paper. Here, we first obtain its finite size ground states, as a function of the spin-velocity coupling intensity and system size, with numerical techniques. These ground states, namely a collectively moving polar state of aligned spins, and two non moving states embedded with topological defects, are recovered from the analysis of the continuum limit theory and simple energetic arguments that allow us to predict their domains of existence in the space of control parameters. Next, the finite temperature regime is investigated numerically. In some specific range of the control parameters, the magnetisation presents a maximum at a finite temperature. This peculiar behaviour, akin to an order-by-disorder transition, is explained by the examination of the free energy of the system and the metastability of the states of minimal energy. The robustness of our results is checked against the geometry of the boundary conditions and the dimensionality of space.
We consider a system of spins on the sites of a three-dimensional pyrochlore lattice of corner-sharing tetrahedra interacting with a predominant effective $xy$ exchange. In particular, we investigate the selection of a long-range ordered state with b roken discrete symmetry induced by thermal fluctuations near the critical region. At the standard mean-field theory (s-MFT) level, in a region of the parameter space of this Hamiltonian that we refer to as $Gamma_5$ region, the ordered state possesses an accidental $U(1)$ degeneracy. In this paper, we show that fluctuations beyond s-MFT lift this degeneracy by selecting one of two states (so-called $psi_2$ and $psi_3$) from the degenerate manifold, thus exposing a certain form of order-by-disorder (ObD). We analytically explore this selection at the microscopic level and close to criticality by elaborating upon and using an extension of the so-called TAP method, originally developed by Thouless, Anderson and Palmer to study the effect of fluctuations in spin glasses. We also use a single-tetrahedron cluster-mean-field theory (c-MFT) to explore over what minimal length scale fluctuations can lift the degeneracy. We find the phase diagrams obtained by these two methods to be somewhat different since c-MFT only includes the shortest-range fluctuations. General symmetry arguments used to construct a Ginzburg-Landau theory to lowest order in the order parameters predict that a weak magnetic moment, $m_z$, along the local $langle 111 rangle$ (${hat z}$) direction is generically induced for a system ordering into a $psi_2$ state, but not so for $psi_3$ ordering. Both E-TAP and c-MFT calculations confirm this weak fluctuation-induced $m_z$ moment. Using a Ginzburg-Landau theory, we discuss the phenomenology of multiple phase transitions below the paramagnetic phase transition and within the $Gamma_5$ long-range ordered phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا