ترغب بنشر مسار تعليمي؟ اضغط هنا

Image-driven discriminative and generative machine learning algorithms for establishing microstructure-processing relationships

239   0   0.0 ( 0 )
 نشر من قبل Wufei Ma
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate methods of microstructure representation for the purpose of predicting processing condition from microstructure image data. A binary alloy (uranium-molybdenum) that is currently under development as a nuclear fuel was studied for the purpose of developing an improved machine learning approach to image recognition, characterization, and building predictive capabilities linking microstructure to processing conditions. Here, we test different microstructure representations and evaluate model performance based on the F1 score. A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material processing conditions. We find that our newly developed microstructure representation describes image data well, and the traditional approach of utilizing area fractions of different phases is insufficient for distinguishing between multiple classes using a relatively small, imbalanced original data set of 272 images. To explore the applicability of generative methods for supplementing such limited data sets, generative adversarial networks were trained to generate artificial microstructure images. Two different generative networks were trained and tested to assess performance. Challenges and best practices associated with applying machine learning to limited microstructure image data sets is also discussed. Our work has implications for quantitative microstructure analysis, and development of microstructure-processing relationships in limited data sets typical of metallurgical process design studies.



قيم البحث

اقرأ أيضاً

175 - Yi Gu , Yuting Gao , Jie Li 2020
Liquify is a common technique for image editing, which can be used for image distortion. Due to the uncertainty in the distortion variation, restoring distorted images caused by liquify filter is a challenging task. To edit images in an efficient way , distorted images are expected to be restored automatically. This paper aims at the distorted image restoration, which is characterized by seeking the appropriate warping and completion of a distorted image. Existing methods focus on the hardware assistance or the geometric principle to solve the specific regular deformation caused by natural phenomena, but they cannot handle the irregularity and uncertainty of artificial distortion in this task. To address this issue, we propose a novel generative and discriminative learning method based on deep neural networks, which can learn various reconstruction mappings and represent complex and high-dimensional data. This method decomposes the task into a rectification stage and a refinement stage. The first stage generative network predicts the mapping from the distorted images to the rectified ones. The second stage generative network then further optimizes the perceptual quality. Since there is no available dataset or benchmark to explore this task, we create a Distorted Face Dataset (DFD) by forward distortion mapping based on CelebA dataset. Extensive experimental evaluation on the proposed benchmark and the application demonstrates that our method is an effective way for distorted image restoration.
The recent surge in the adoption of machine learning techniques for materials design, discovery, and characterization has resulted in an increased interest and application of Image Driven Machine Learning (IDML) approaches. In this work, we review th e application of IDML to the field of materials characterization. A hierarchy of six action steps is defined which compartmentalizes a problem statement into well-defined modules. The studies reviewed in this work are analyzed through the decisions adopted by them at each of these steps. Such a review permits a granular assessment of the field, for example the impact of IDML on materials characterization at the nanoscale, the number of images in a typical dataset required to train a semantic segmentation model on electron microscopy images, the prevalence of transfer learning in the domain, etc. Finally, we discuss the importance of interpretability and explainability, and provide an overview of two emerging techniques in the field: semantic segmentation and generative adversarial networks.
Deep learning based task systems normally rely on a large amount of manually labeled training data, which is expensive to obtain and subject to operator variations. Moreover, it does not always hold that the manually labeled data and the unlabeled da ta are sitting in the same distribution. In this paper, we alleviate these problems by proposing a discriminative consistent domain generation (DCDG) approach to achieve a semi-supervised learning. The discriminative consistent domain is achieved by a double-sided domain adaptation. The double-sided domain adaptation aims to make a fusion of the feature spaces of labeled data and unlabeled data. In this way, we can fit the differences of various distributions between labeled data and unlabeled data. In order to keep the discriminativeness of generated consistent domain for the task learning, we apply an indirect learning for the double-sided domain adaptation. Based on the generated discriminative consistent domain, we can use the unlabeled data to learn the task model along with the labeled data via a consistent image generation. We demonstrate the performance of our proposed DCDG on the late gadolinium enhancement cardiac MRI (LGE-CMRI) images acquired from patients with atrial fibrillation in two clinical centers for the segmentation of the left atrium anatomy (LA) and proximal pulmonary veins (PVs). The experiments show that our semi-supervised approach achieves compelling segmentation results, which can prove the robustness of DCDG for the semi-supervised learning using the unlabeled data along with labeled data acquired from a single center or multicenter studies.
We extend first-order model agnostic meta-learning algorithms (including FOMAML and Reptile) to image segmentation, present a novel neural network architecture built for fast learning which we call EfficientLab, and leverage a formal definition of th e test error of meta-learning algorithms to decrease error on out of distribution tasks. We show state of the art results on the FSS-1000 dataset by meta-training EfficientLab with FOMAML and using Bayesian optimization to infer the optimal test-time adaptation routine hyperparameters. We also construct a small benchmark dataset, FP-k, for the empirical study of how meta-learning systems perform in both few- and many-shot settings. On the FP-k dataset, we show that meta-learned initializations provide value for canonical few-shot image segmentation but their performance is quickly matched by conventional transfer learning with performance being equal beyond 10 labeled examples. Our code, meta-learned model, and the FP-k dataset are available at https://github.com/ml4ai/mliis .
Diabetes is a global epidemic and it is increasing at an alarming rate. The International Diabetes Federation (IDF) projected that the total number of people with diabetes globally may increase by 48%, from 425 million (year 2017) to 629 million (yea r 2045). Moreover, diabetes had caused millions of deaths and the number is increasing drastically. Therefore, this paper addresses the background of diabetes and its complications. In addition, this paper investigates innovative applications and past researches in the areas of diabetes management system with applied eye fundus and tongue digital images. Different types of existing applied eye fundus and tongue digital image processing with diabetes management systems in the market and state-of-the-art machine learning techniques from previous literature have been reviewed. The implication of this paper is to have an overview in diabetic research and what new machine learning techniques can be proposed in solving this global epidemic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا