ترغب بنشر مسار تعليمي؟ اضغط هنا

Generative and Discriminative Learning for Distorted Image Restoration

176   0   0.0 ( 0 )
 نشر من قبل Yi Gu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquify is a common technique for image editing, which can be used for image distortion. Due to the uncertainty in the distortion variation, restoring distorted images caused by liquify filter is a challenging task. To edit images in an efficient way, distorted images are expected to be restored automatically. This paper aims at the distorted image restoration, which is characterized by seeking the appropriate warping and completion of a distorted image. Existing methods focus on the hardware assistance or the geometric principle to solve the specific regular deformation caused by natural phenomena, but they cannot handle the irregularity and uncertainty of artificial distortion in this task. To address this issue, we propose a novel generative and discriminative learning method based on deep neural networks, which can learn various reconstruction mappings and represent complex and high-dimensional data. This method decomposes the task into a rectification stage and a refinement stage. The first stage generative network predicts the mapping from the distorted images to the rectified ones. The second stage generative network then further optimizes the perceptual quality. Since there is no available dataset or benchmark to explore this task, we create a Distorted Face Dataset (DFD) by forward distortion mapping based on CelebA dataset. Extensive experimental evaluation on the proposed benchmark and the application demonstrates that our method is an effective way for distorted image restoration.

قيم البحث

اقرأ أيضاً

This work presents an unsupervised deep learning scheme that exploiting high-dimensional assisted score-based generative model for color image restoration tasks. Considering that the sample number and internal dimension in score-based generative mode l have key influence on estimating the gradients of data distribution, two different high-dimensional ways are proposed: The channel-copy transformation increases the sample number and the pixel-scale transformation decreases feasible space dimension. Subsequently, a set of high-dimensional tensors represented by these transformations are used to train the network through denoising score matching. Then, sampling is performed by annealing Langevin dynamics and alternative data-consistency update. Furthermore, to alleviate the difficulty of learning high-dimensional representation, a progressive strategy is proposed to leverage the performance. The proposed unsupervised learning and iterative restoration algo-rithm, which involves a pre-trained generative network to obtain prior, has transparent and clear interpretation compared to other data-driven approaches. Experimental results on demosaicking and inpainting conveyed the remarkable performance and diversity of our proposed method.
With more advanced deep network architectures and learning schemes such as GANs, the performance of video restoration algorithms has greatly improved recently. Meanwhile, the loss functions for optimizing deep neural networks remain relatively unchan ged. To this end, we propose a new framework for building effective loss functions by learning a discriminative space specific to a video restoration task. Our framework is similar to GANs in that we iteratively train two networks - a generator and a loss network. The generator learns to restore videos in a supervised fashion, by following ground truth features through the feature matching in the discriminative space learned by the loss network. In addition, we also introduce a new relation loss in order to maintain the temporal consistency in output videos. Experiments on video superresolution and deblurring show that our method generates visually more pleasing videos with better quantitative perceptual metric values than the other state-of-the-art methods.
State-of-the-art approaches toward image restoration can be classified into model-based and learning-based. The former - best represented by sparse coding techniques - strive to exploit intrinsic prior knowledge about the unknown high-resolution imag es; while the latter - popularized by recently developed deep learning techniques - leverage external image prior from some training dataset. It is natural to explore their middle ground and pursue a hybrid image prior capable of achieving the best in both worlds. In this paper, we propose a systematic approach of achieving this goal called Structured Analysis Sparse Coding (SASC). Specifically, a structured sparse prior is learned from extrinsic training data via a deep convolutional neural network (in a similar way to previous learning-based approaches); meantime another structured sparse prior is internally estimated from the input observation image (similar to previous model-based approaches). Two structured sparse priors will then be combined to produce a hybrid prior incorporating the knowledge from both domains. To manage the computational complexity, we have developed a novel framework of implementing hybrid structured sparse coding processes by deep convolutional neural networks. Experimental results show that the proposed hybrid image restoration method performs comparably with and often better than the current state-of-the-art techniques.
Underwater image restoration is of significant importance in unveiling the underwater world. Numerous techniques and algorithms have been developed in the past decades. However, due to fundamental difficulties associated with imaging/sensing, lightin g, and refractive geometric distortions, in capturing clear underwater images, no comprehensive evaluations have been conducted of underwater image restoration. To address this gap, we have constructed a large-scale real underwater image dataset, dubbed `HICRD (Heron Island Coral Reef Dataset), for the purpose of benchmarking existing methods and supporting the development of new deep-learning based methods. We employ accurate water parameter (diffuse attenuation coefficient) in generating reference images. There are 2000 reference restored images and 6003 original underwater images in the unpaired training set. Further, we present a novel method for underwater image restoration based on unsupervised image-to-image translation framework. Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images. Extensive experiments with comparisons to recent approaches further demonstrate the superiority of our proposed method. Our code and dataset are publicly available at GitHub.
We investigate methods of microstructure representation for the purpose of predicting processing condition from microstructure image data. A binary alloy (uranium-molybdenum) that is currently under development as a nuclear fuel was studied for the p urpose of developing an improved machine learning approach to image recognition, characterization, and building predictive capabilities linking microstructure to processing conditions. Here, we test different microstructure representations and evaluate model performance based on the F1 score. A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material processing conditions. We find that our newly developed microstructure representation describes image data well, and the traditional approach of utilizing area fractions of different phases is insufficient for distinguishing between multiple classes using a relatively small, imbalanced original data set of 272 images. To explore the applicability of generative methods for supplementing such limited data sets, generative adversarial networks were trained to generate artificial microstructure images. Two different generative networks were trained and tested to assess performance. Challenges and best practices associated with applying machine learning to limited microstructure image data sets is also discussed. Our work has implications for quantitative microstructure analysis, and development of microstructure-processing relationships in limited data sets typical of metallurgical process design studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا