ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2014ab: An Aspherical Type IIn Supernova with Low Polarization

121   0   0.0 ( 0 )
 نشر من قبل Christopher Bilinski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through $sim 200$ days after peak brightness. SN 2014ab was a luminous Type IIn SN ($M_V < -19.14$ mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Prediscovery upper limits constrain the time of explosion to within 200 days prior to discovery. While SN 2014ab declined by $sim 1$ mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa$beta$ emission line shows a profile very similar to that of H$alpha$, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. This suggests that we are seeing emission from a photosphere that has only small deviation from circular symmetry face-on. We are likely seeing a SN IIn with nearly circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be similar events viewed from different directions.



قيم البحث

اقرأ أيضاً

We present photometry, spectra, and spectropolarimetry of supernova (SN) 2012ab, mostly obtained over the course of $sim 300$ days after discovery. SN 2012ab was a Type IIn (SN IIn) event discovered near the nucleus of spiral galaxy 2MASXJ12224762+05 36247. While its light curve resembles that of SN 1998S, its spectral evolution does not. We see indications of CSM interaction in the strong intermediate-width emission features, the high luminosity (peak at absolute magnitude $M=-19.5$), and the lack of broad absorption features in the spectrum. The H$alpha$ emission undergoes a peculiar transition. At early times it shows a broad blue emission wing out to $-14{,}000$ km $mathrm{s^{-1}}$ and a truncated red wing. Then at late times ($>$ 100$,$days) it shows a truncated blue wing and a very broad red emission wing out to roughly $+20{,}000$ km $mathrm{s^{-1}}$. This late-time broad red wing probably arises in the reverse shock. Spectra also show an asymmetric intermediate-width H$alpha$ component with stronger emission on the red side at late times. The evolution of the asymmetric profiles requires a density structure in the distant CSM that is highly aspherical. Our spectropolarimetric data also suggest asphericity with a strong continuum polarization of $sim 1-3$% and depolarization in the H$alpha$ line, indicating asphericity in the CSM at a level comparable to that in other SNe IIn. We estimate a mass-loss rate of $dot{M} = 0.050, {rm M}_{odot},mathrm{yr^{-1}}$ for $v_{rm pre} = 100$$,$km$,$$mathrm{s^{-1}}$ extending back at least 75$,$yr prior to the SN. The strong departure from axisymmetry in the CSM of SN 2012ab may suggest that the progenitor was an eccentric binary system undergoing eruptive mass loss.
138 - A. A. Miller 2009
We present spectroscopic and photometric observations of the Type IIn supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of ~400 days, making it the first SN to take significantly longer than 100 days to reach peak optical lumi nosity. The peak absolute magnitude of SN 2008iy was M_r ~ -19.1 mag, and the total radiated energy over the first ~700 days was ~2 x 10^50 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN 1988Z at late times, and, like SN 1988Z, it is a luminous X-ray source (both supernovae had an X-ray luminosity L_ X > 10^41 erg/s). The Halpha emission profile of SN 2008iy shows a narrow P Cygni absorption component, implying a pre-SN wind speed of ~100 km/s. We argue that the luminosity of SN 2008iy is powered via the interaction of the SN ejecta with a dense, clumpy circumstellar medium. The ~400 day rise time can be understood if the number density of clumps increases with distance over a radius ~1.7 x 10^16 cm from the progenitor. This scenario is possible if the progenitor experienced an episodic phase of enhanced mass-loss < 1 century prior to explosion or the progenitor wind speed increased during the decades before core collapse. We favour the former scenario, which is reminiscent of the eruptive mass-loss episodes observed for luminous blue variable (LBV) stars. The progenitor wind speed and increased mass-loss rates serve as further evidence that at least some, and perhaps all, Type IIn supernovae experience LBV-like eruptions shortly before core collapse. We also discuss the host galaxy of SN 2008iy, a subluminous dwarf galaxy, and offer a few reasons why the recent suggestion that unusual, luminous supernovae preferentially occur in dwarf galaxies may be the result of observational biases.
We present optical and near-infrared photometry and spectroscopy of the Type IIn supernova (SN) 2014ab, obtained by the Carnegie Supernova Project II (CSP-II) and initiated immediately after its optical discovery. We also present mid-infrared photome try obtained by the Wide-field Infrared Survey Explorer (WISE) satellite extending from 56 days prior to the optical discovery to over 1600 days. The light curve of SN 2014ab evolves slowly, while the spectra exhibit strong emission features produced from the interaction between rapidly expanding ejecta and dense circumstellar matter. The light curve and spectral properties are very similar to those of SN 2010jl. The estimated mass-loss rate of the progenitor of SN 2014ab is of the order of 0.1 Msun/yr under the assumption of spherically symmetric circumstellar matter and steady mass loss. Although the mid-infrared luminosity increases due to emission from dust, which is characterized by a blackbody temperature close to the dust evaporation temperature (~ 2000 K), no clear signatures of in situ dust formation within the cold dense shell located behind the forward shock are observed in SN 2014ab in early phases. Mid-infrared emission of SN 2014ab may originate from pre-existing dust located within dense circumstellar matter that is heated by the SN shock or shock-driven radiation. Finally, for the benefit of the community, we also present in an Appendix five near-infrared spectra of SN 2010jl obtained between 450 to 1300 days post discovery.
We present a sample of supernovae Type IIn (SNe IIn) from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). The SNe IIn found and followed by the PTF/iPTF were used to sel ect a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We find that the typical rise times are divided into fast and slow risers at $20pm6$ d and $50pm11$ d, respectively. The decline rates are possibly divided into two clusters, but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude $-22 lesssim M_g lesssim -13$ mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observers frame $r$-band, for SNe at redshifts $z < 0.25$. By applying K-corrections and also including ostensibly superluminous SNe IIn, we find that the peak magnitudes are $M_{rm peak}^{r} = -19.18pm1.32$ mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to $1.4^{+14.6}_{-1.0} %$ of the SNe IIn. We also investigate a possible sub-type of SNe IIn with a fast rise to a $gtrsim 50$ d plateau followed by a slow, linear decline.
142 - C. Trundle 2009
An optical photometric and spectroscopic analysis of the slowly-evolving Type IIn SN2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the pre sence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in Type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow Halpha P-Cygni profile, the absorption component of which has a width of 128 km/s. This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا