ﻻ يوجد ملخص باللغة العربية
We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein polynomial prior of Petrone (1999a,b) and Choudhuri et al. (2004). Whittles likelihood approximation is used to obtain the pseudo-posterior distribution. This method allows for a data-driven choice of the number of mixture components and the location of knots. Posterior samples are obtained using a Metropolis-within-Gibbs Markov chain Monte Carlo algorithm, and mixing is improved using parallel tempering. We conduct a simulation study to demonstrate that for complicated spectral densities, the B-spline prior provides more accurate Monte Carlo estimates in terms of $L_1$-error and uniform coverage probabilities than the Bernstein polynomial prior. We apply the algorithm to annual mean sunspot data to estimate the solar cycle. Finally, we demonstrate the algorithms ability to estimate a spectral density with sharp features, using real gravitational wave detector data from LIGOs sixth science run, recoloured to match the Advanced LIGO target sensitivity.
Mutual information is a widely-used information theoretic measure to quantify the amount of association between variables. It is used extensively in many applications such as image registration, diagnosis of failures in electrical machines, pattern r
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and thes
We develop a fully Bayesian nonparametric regression model based on a Levy process prior named MLABS (Multivariate Levy Adaptive B-Spline regression) model, a multivariate version of the LARK (Levy Adaptive Regression Kernels) models, for estimating
We describe an efficient implementation of Bayesian quantum phase estimation in the presence of noise and multiple eigenstates. The main contribution of this work is the dynamic switching between different representations of the phase distributions,
We develop a scalable multi-step Monte Carlo algorithm for inference under a large class of nonparametric Bayesian models for clustering and classification. Each step is embarrassingly parallel and can be implemented using the same Markov chain Monte