ﻻ يوجد ملخص باللغة العربية
This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions of continuous-time Markov chains on a subset of the non-negative integers. A new identity for stationary measures is established. In particular, for continuous-time Markov chains with asymptotic power-law transition rates, tail asymptotics for stationary distributions are classified into three types by three easily computable parameters: (i) Conley-Maxwell-Poisson distributions (light-tailed), (ii) exponential-tailed distributions, and (iii) heavy-tailed distributions. Similar results are derived for quasi-stationary distributions. The approach to establish tail asymptotics is different from the classical semimartingale approach. We apply our results to biochemical reaction networks (modeled as continuous-time Markov chains), a general single-cell stochastic gene expression model, an extended class of branching processes, and stochastic population processes with bursty reproduction, none of which are birth-death processes.
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
This paper contributes an in-depth study of properties of continuous time Markov chains (CTMCs) on non-negative integer lattices $N_0^d$, with particular interest in one-dimensional CTMCs with polynomial transitions rates. Such stochastic processes a
We study certain properties of the function space of autocorrelation functions of Unit Continuous Time Markov Chains (CTMCs). It is shown that under particular conditions, the $L^p$ norm of the autocorrelation function of arbitrary finite state space
Computing the stationary distributions of a continuous-time Markov chain (CTMC) involves solving a set of linear equations. In most cases of interest, the number of equations is infinite or too large, and the equations cannot be solved analytically o
This paper is motivated by demands in stochastic reaction network theory. The $Q$-matrix of a stochastic reaction network can be derived from the reaction graph, an edge-labelled directed graph encoding the jump vectors of an associated continuous ti