ﻻ يوجد ملخص باللغة العربية
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computationally tractable, they rely on a number of assumptions that may not be realistic for the domain of application; in particular, the ability to provide exact numerical parameter assessments, and the applicability of time-homogeneity and the eponymous Markov property. In this work, we extend these models to imprecise continuous-time Markov chains (ICTMCs), which are a robust generalisation that relaxes these assumptions while remaining computationally tractable. More technically, an ICTMC is a set of precise continuous-time finite-state stochastic processes, and rather than computing expected values of functions, we seek to compute lower expectations, which are tight lower bounds on the expectations that correspond to such a set of precise models. Note that, in contrast to e.g. Bayesian methods, all the elements of such a set are treated on equal grounds; we do not consider a distribution over this set. The first part of this paper develops a formalism for describing continuous-time finite-state stochastic processes that does not require the aforementioned simplifying assumptions. Next, this formalism is used to characterise ICTMCs and to investigate their properties. The concept of lower expectation is then given an alternative operator-theoretic characterisation, by means of a lower transition operator, and the properties of this operator are investigated as well. Finally, we use this lower transition operator to derive tractable algorithms (with polynomial runtime complexity w.r.t. the maximum numerical error) for computing the lower expectation of functions that depend on the state at any finite number of time points.
We consider the problem of performing inference with imprecise continuous-time hidden Markov chains, that is, imprecise continuous-time Markov chains that are augmented with random output variables whose distribution depends on the hidden state of th
This paper contributes an in-depth study of properties of continuous time Markov chains (CTMCs) on non-negative integer lattices $N_0^d$, with particular interest in one-dimensional CTMCs with polynomial transitions rates. Such stochastic processes a
We study certain properties of the function space of autocorrelation functions of Unit Continuous Time Markov Chains (CTMCs). It is shown that under particular conditions, the $L^p$ norm of the autocorrelation function of arbitrary finite state space
This paper is motivated by demands in stochastic reaction network theory. The $Q$-matrix of a stochastic reaction network can be derived from the reaction graph, an edge-labelled directed graph encoding the jump vectors of an associated continuous ti
This paper investigates tail asymptotics of stationary distributions and quasi-stationary distributions of continuous-time Markov chains on a subset of the non-negative integers. A new identity for stationary measures is established. In particular, f