ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical analysis of plasmon resonances for curved nanorods

113   0   0.0 ( 0 )
 نشر من قبل Hongyu Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate plasmon resonances for curved nanorods which present anisotropic geometries. We analyze quantitative properties of the plasmon resonance and its relationship to the metamaterial configurations and the anisotropic geometries of the nanorods. Based on delicate and subtle asymptotic and spectral analysis of the layer potential operators, particularly the Neumann-Poincare operators, associated with anisotropic geometries, we derive sharp asymptotic formulae of the corresponding scattering field in the quasi-static regime. By carefully analyzing the asymptotic formulae, we establish sharp conditions that can ensure the occurrence of the plasmonic resonance. The resonance conditions couple the metamaterial parameters, the wave frequency and the nanorod geometry in an intricate but elegant manner. We provide thorough resonance analysis by studying the wave fields both inside and outside the nanorod. Furthermore, our quantitative analysis indicates that different parts of the nanorod induce varying degrees of resonance. Specifically, the resonant strength at the two end-parts of the curved nanorod is more outstanding than that of the facade-part of the nanorod. This paper presents the first theoretical study on plasmon resonances for nanostructures within anisotropic geometries.

قيم البحث

اقرأ أيضاً

We study semiclassical resonances generated by homoclinic trapped sets. First, under some general assumptions, we prove that there is no resonance in a region below the real axis. Then, we obtain a quantization rule and the asymptotic expansion of th e resonances when there is a finite number of homoclinic trajectories. The same kind of results is proved for homoclinic sets of maximal dimension. Next, we generalize to the case of homoclinic/heteroclinic trajectories and we study the three bump case. In all these settings, the resonances may either accumulate on curves or form clouds. We also describe the corresponding resonant states.
We investigate a mathematical theory for the erosion of sediment which begins with the study of a non-linear, parabolic, weighted 4-Laplace equation on a rectangular domain corresponding to a base segment of an extended landscape. Imposing natural bo undary conditions, we show that the equation admits entropy solutions and prove regularity and uniqueness of weak solutions when they exist. We then investigate a particular class of weak solutions studied in previous work of the first author and produce numerical simulations of these solutions. After introducing an optimal transportation problem for the sediment flow, we show that this class of weak solutions implements the optimal transportation of the sediment.
In this paper we study the influence of an electric field on a two dimen-sional waveguide. We show that bound states that occur under a geometrical deformation of the guide turn into resonances when we apply an electric field of small intensity havin g a nonzero component on the longitudinal direction of the system. MSC-2010 number: 35B34,35P25, 81Q10, 82D77.
We give the semiclassical asymptotic of barrier-top resonances for Schr{o}dinger operators on ${mathbb R}^{n}$, $n geq 1$, whose potential is $C^{infty}$ everywhere and analytic at infinity. In the globally analytic setting, this has already been obt ained. Our proof is based on a propagation of singularities theorem at a hyperbolic fixed point that we establish here. This last result refines a theorem of the same authors, and its proof follows another approach.
In this article, we study the strong well-posedness, stability and optimal control of an incompressible magneto-viscoelastic fluid model in two dimensions. The model consists of an incompressible Navier--Stokes equation for the velocity field, an evo lution equation for the deformation tensor, and a gradient flow equation for the magnetization vector. First, we prove that the model under consideration posseses a global strong solution in a suitable functional framework. Second, we derive stability estimates with respect to an external magnetic field. Based on the stability estimates we use the external magnetic field as the control to minimize a cost functional of tracking-type. We prove existence of an optimal control and derive first-order necessary optimality conditions. Finally, we consider a second optimal control problem, where the external magnetic field, which represents the control, is generated by a finite number of fixed magnetic field coils.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا