ﻻ يوجد ملخص باللغة العربية
We study semiclassical resonances generated by homoclinic trapped sets. First, under some general assumptions, we prove that there is no resonance in a region below the real axis. Then, we obtain a quantization rule and the asymptotic expansion of the resonances when there is a finite number of homoclinic trajectories. The same kind of results is proved for homoclinic sets of maximal dimension. Next, we generalize to the case of homoclinic/heteroclinic trajectories and we study the three bump case. In all these settings, the resonances may either accumulate on curves or form clouds. We also describe the corresponding resonant states.
We give the semiclassical asymptotic of barrier-top resonances for Schr{o}dinger operators on ${mathbb R}^{n}$, $n geq 1$, whose potential is $C^{infty}$ everywhere and analytic at infinity. In the globally analytic setting, this has already been obt
We investigate plasmon resonances for curved nanorods which present anisotropic geometries. We analyze quantitative properties of the plasmon resonance and its relationship to the metamaterial configurations and the anisotropic geometries of the nano
In the framework of semiclassical resonances, we make more precise the link between polynomial estimates of the extension of the resolvent and propagation of the singularities through the trapped set. This approach makes it possible to eliminate infi
We prove that every sectional-hyperbolic Lyapunov stable set contains a nontrivial homoclinic class.
The question of whether it is possible to compute scattering resonances of Schrodinger operators - independently of the particular potential - is addressed. A positive answer is given, and it is shown that the only information required to be known a