ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-independent determination of the Migdal effect via photoabsorption

151   0   0.0 ( 0 )
 نشر من قبل Cheng-Pang Liu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Migdal effect in a dark-matter-nucleus scattering extends the direct search experiments to the sub-GeV mass region through electron ionization with sub-keV detection thresholds. In this paper, we derive a rigorous and model-independent Migdal-photoabsorption relation that links the sub-keV Migdal process to photoabsorption. This relation is free of theoretical uncertainties as it only requires the photoabsorption cross section as the experimental input. Validity of this relation is explicitly checked in the case of xenon with an state-of-the-arts atomic calculation that is well-benchmarked by experiments. The predictions based on this relation for xenon, argon, semiconductor silicon and germanium detectors are presented and discussed.

قيم البحث

اقرأ أيضاً

When a nucleus in an atom undergoes a collision, there is a small probability to inelastically excite an electron as a result of the Migdal effect. In this Letter, we present a first complete derivation of the Migdal effect from dark matter-nucleus s cattering in semiconductors, which also accounts for multiphonon production. The rate can be expressed in terms of the energy loss function of the material, which we calculate with density functional theory (DFT) methods. Because of the smaller gap for electron excitations, we find that the rate for the Migdal effect is much higher in semiconductors than in atomic targets. Accounting for the Migdal effect in semiconductors can therefore significantly improve the sensitivity of experiments such as DAMIC, SENSEI and SuperCDMS to sub-GeV dark matter.
Based on reflection symmetry in the reaction plane, it is shown that measuring the transverse spin-transfer coefficient $K_{yy}$ in the $bar{K}N to KXi$ reaction directly determines the parity of the produced cascade hyperon in a model-independent wa y as $pi_Xi =K_{yy}$, where $pi_Xi =pm 1$ is the parity. This result based on Bohrs theorem provides a completely general, universal relationship that applies to the entire hyperon spectrum. A similar expression is obtained for the photoreaction $gamma N to K K Xi$ by measuring both the double-polarization observable $K_{yy}$ and the photon-beam asymmetry $Sigma$. Regarding the feasibility of such experiments, it is pointed out that the self-analyzing property of the $Xi$s can be invoked, thus requiring only a polarized nucleon target.
Recent measurements of the germanium quenching factor deviate significantly from the predictions of the standard Lindhard model for nuclear recoil energies below a keV. This departure may be explained by the Migdal effect in neutron scattering on ger manium. We show that the Migdal effect on the quenching factor can mimic the signal of a light Z or light scalar mediator in coherent elastic neutrino nucleus scattering experiments with reactor antineutrinos. It is imperative that the quenching factor of nuclei with low recoil energy thresholds be precisely measured close to threshold to avoid such confusion. This will also help in experimental searches of light dark matter.
The entanglement entropy of two-body elastic scattering at high energies is studied by using the model-independent Levy imaging method for investigating the hadron structure. It is considered the finite entropy in the momentum Hilbert space properly regularized and results are compared to recent evaluation using the diffraction peak approximation. We present the entropy for RHIC, Tevatron and LHC energies pointing out the underlying uncertainties.
We consider searches for the inelastic scattering of low-mass dark matter at direct detection experiments, using the Migdal effect. We find that there are degeneracies between the dark matter mass and the mass splitting that are difficult to break. U sing XENON1T data we set bounds on a previously unexplored region of the inelastic dark matter parameter space. For the case of exothermic scattering, we find that the Migdal effect allows xenon-based detectors to have sensitivity to dark matter with $mathcal{O}$(MeV) mass, far beyond what can be obtained with nuclear recoils.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا