ترغب بنشر مسار تعليمي؟ اضغط هنا

The Migdal effect in semiconductors

228   0   0.0 ( 0 )
 نشر من قبل Tongyan Lin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

When a nucleus in an atom undergoes a collision, there is a small probability to inelastically excite an electron as a result of the Migdal effect. In this Letter, we present a first complete derivation of the Migdal effect from dark matter-nucleus scattering in semiconductors, which also accounts for multiphonon production. The rate can be expressed in terms of the energy loss function of the material, which we calculate with density functional theory (DFT) methods. Because of the smaller gap for electron excitations, we find that the rate for the Migdal effect is much higher in semiconductors than in atomic targets. Accounting for the Migdal effect in semiconductors can therefore significantly improve the sensitivity of experiments such as DAMIC, SENSEI and SuperCDMS to sub-GeV dark matter.



قيم البحث

اقرأ أيضاً

The Migdal effect in a dark-matter-nucleus scattering extends the direct search experiments to the sub-GeV mass region through electron ionization with sub-keV detection thresholds. In this paper, we derive a rigorous and model-independent Migdal-pho toabsorption relation that links the sub-keV Migdal process to photoabsorption. This relation is free of theoretical uncertainties as it only requires the photoabsorption cross section as the experimental input. Validity of this relation is explicitly checked in the case of xenon with an state-of-the-arts atomic calculation that is well-benchmarked by experiments. The predictions based on this relation for xenon, argon, semiconductor silicon and germanium detectors are presented and discussed.
Recent measurements of the germanium quenching factor deviate significantly from the predictions of the standard Lindhard model for nuclear recoil energies below a keV. This departure may be explained by the Migdal effect in neutron scattering on ger manium. We show that the Migdal effect on the quenching factor can mimic the signal of a light Z or light scalar mediator in coherent elastic neutrino nucleus scattering experiments with reactor antineutrinos. It is imperative that the quenching factor of nuclei with low recoil energy thresholds be precisely measured close to threshold to avoid such confusion. This will also help in experimental searches of light dark matter.
We consider searches for the inelastic scattering of low-mass dark matter at direct detection experiments, using the Migdal effect. We find that there are degeneracies between the dark matter mass and the mass splitting that are difficult to break. U sing XENON1T data we set bounds on a previously unexplored region of the inelastic dark matter parameter space. For the case of exothermic scattering, we find that the Migdal effect allows xenon-based detectors to have sensitivity to dark matter with $mathcal{O}$(MeV) mass, far beyond what can be obtained with nuclear recoils.
Recent theoretical studies have suggested that the suddenly recoiled atom struck by dark matter (DM) particle is much more likely to excite or lose its electrons than expected. Such Migdal effect provides a new avenue for exploring the sub-GeV DM par ticles. There have been various attempts to describe the Migdal effect in liquids and semiconductor targets. In this paper we incorporate the treatment of the bremsstrahlung process and the electronic many-body effects to give a full description of the Migdal effect in bulk semiconductor targets diamond and silicon. Compared with the results obtained with the atom-centered localized Wannier functions (WFs) under the framework of the tight-binding (TB) approximation, the method proposed in this study yields much larger event rates in the low energy regime, due to a $omega^{-4}$ scaling. We also find that the effect of the bremsstrahlung photon mediating the Coulomb interaction between recoiled ion and the electron-hole pair is equivalent to that of the exchange of a single phonon.
In the CERN NA63 collaboration we have addressed the question of the potential inadequacy of the commonly used Migdal formulation of the Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20 and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference target, Ta. For each target and energy, a comparison between simulated values based on the LPM suppression of incoherent bremsstrahlung is shown, taking multi-photon effects into account. For these targets and energies, we find that Migdals theoretical formulation is adequate to a precision of better than about 5%, irrespective of the target substance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا