ﻻ يوجد ملخص باللغة العربية
This paper presents a novel mutual information (MI) matrix based method for fault detection. Given a $m$-dimensional fault process, the MI matrix is a $m times m$ matrix in which the $(i,j)$-th entry measures the MI values between the $i$-th dimension and the $j$-th dimension variables. We introduce the recently proposed matrix-based Renyis $alpha$-entropy functional to estimate MI values in each entry of the MI matrix. The new estimator avoids density estimation and it operates on the eigenspectrum of a (normalized) symmetric positive definite (SPD) matrix, which makes it well suited for industrial process. We combine different orders of statistics of the transformed components (TCs) extracted from the MI matrix to constitute the detection index, and derive a simple similarity index to monitor the changes of characteristics of the underlying process in consecutive windows. We term the overall methodology projections of mutual information matrix (PMIM). Experiments on both synthetic data and the benchmark Tennessee Eastman process demonstrate the interpretability of PMIM in identifying the root variables that cause the faults, and its superiority in detecting the occurrence of faults in terms of the improved fault detection rate (FDR) and the lowest false alarm rate (FAR). The advantages of PMIM is also less sensitive to hyper-parameters. The advantages of PMIM is also less sensitive to hyper-parameters. Code of PMIM is available at https://github.com/SJYuCNEL/Fault_detection_PMIM
Power system cascading failures become more time variant and complex because of the increasing network interconnection and higher renewable energy penetration. High computational cost is the main obstacle for a more frequent online cascading failure
This paper presents a method to enhance fault isolation without adding physical sensors on a turbocharged spark ignited petrol engine system by designing additional residuals from an initial observer-based residuals setup. The best candidates from al
This paper deals with the fault detection and isolation (FDI) problem for linear structured systems in which the system matrices are given by zero/nonzero/arbitrary pattern matrices. In this paper, we follow a geometric approach to verify solvability
The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportati
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely m