ﻻ يوجد ملخص باللغة العربية
We have systematically studied the strong correlation effects in A-site ordered perovskites CaCu3Ti4-xRuxO12 (x = 0, 1, 3.5, 4) by using photoemission and inverse photoemission spectroscopies. In x = 0, 1, 3.5, the peak positions of the strongly correlated Cu 3d states around -3.8 eV and Ti 3d states around 3.6 eV little change. On the other hand, in x = 4, the Cu 3d states is observed around -2.5 eV. These indicate that Ti plays an important role to retain the strong correlation effects. In addition, the multiplet structures of Cu 3d final states from -8 to -15 eV become weak as Ru increases, indicating the reduction of the localized characters of Cu 3d states. At the Fermi level, we observe the absence of spectral weight in x = 0, 1 and the development of Ru 4d in-gap states between the Cu 3d and Ti 3d peaks in x = 3.5, 4, which give rise to the metal-insulator transition between x = 1 and x = 3.5.
We report angle-resolved photoemission spectroscopy (ARPES) results of A-site ordered perovskite CaCu$_3$Ti$_4$O$_{12}$. We have observed the clear band dispersions, which are shifted to the higher energy by 1.7 eV and show the band narrowing around
We have performed the photoemission and inverse photoemission experiments to elucidate the origin of Mott insulating states in A-site ordered perovskite CaCu$_3$Ti$_4$O$_{12}$ (CCTO). Experimental results have revealed that Cu 3$d$-O 2$p$ hybridized
In this work we explore the performance of a recently derived many-body effective energy theory for the calculation of photoemission spectra in the regime of strong electron correlation. We apply the theory to paramagnetic MnO, FeO, CoO, and NiO, whi
We have investigated the electronic structure of A-site ordered CaCu$_3$Ti$_4$O$_{12}$ as a function of temperature by using angle-integrated and -resolved photoemission spectroscopies. Intrinsic changes of the electronic structure have been successf
We have studied the temperature evolution of the inverse photoemission spectra of phase separated La$_{0.2}$Sr$_{0.8}$MnO$_{3}$. To identify the features in the room temperature experimental spectra, band structure calculations using Korringa-Kohn-Ro