ﻻ يوجد ملخص باللغة العربية
HD49330 is a Be star that underwent an outburst during its five-month observation with the CoRoT satellite. An analysis of its light curve revealed several independent p and g pulsation modes, in addition to showing that the amplitude of the modes is directly correlated with the outburst. We modelled the results obtained with CoRoT. We modelled the flattening of the structure of the star due to rapid rotation in two ways: Chandrasekhar-Milnes expansion and 2D structure computed with ROTORC. We then modelled kappa-driven pulsations. We also adapted the formalism of the excitation and amplitude of stochastically excited gravito-inertial modes to rapidly rotating stars, and we modelled those pulsations as well. We find that while pulsation p modes are excited by the kappa mechanism, the observed g modes are a result of stochastic excitation. In contrast, g and r waves are stochastically excited in the convective core and transport angular momentum to the surface, increasing its rotation rate. This destabilises the external layers of the star, which then emits transient stochastically excited g waves. These transient waves produce most of the low-frequency signal detected in the CoRoT data and ignite the outburst. During this unstable phase, p modes disappear at the surface because their cavity is broken. Following the outburst and ejection of the surface layer, relaxation occurs, making the transient g waves disappear and p modes reappear. This work includes the first coherent model of stochastically excited gravito-inertial pulsation modes in a rapidly rotating Be star. It provides an explanation for the correlation between the variation in the amplitude of frequencies detected in the CoRoT data and the occurrence of an outburst. This scenario could apply to other pulsating Be stars, providing an explanation to the long-standing questions surrounding Be outbursts and disks.
Transport of angular momentum is a long-standing problem in stellar physics which recently became more acute thanks to the observations of the space-borne mission emph{Kepler}. Indeed, the need for an efficient mechanism able to explain the rotation
Recent photometric observations of massive stars show ubiquitous low-frequency red-noise variability, which has been interpreted as internal gravity waves (IGWs). Simulations of IGWs generated by convection show smooth surface wave spectra, qualitati
We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation and consequent angular momentum transport by such waves. We find that the
The radio spectra of main-sequence stars remain largely unconstrained due to the lack of observational data to inform stellar atmosphere models. As such, the dominant emission mechanisms at long wavelengths, how they vary with spectral type, and how
Disk accretion at high rate onto a white dwarf or a neutron star has been suggested to result in the formation of a spreading layer (SL) - a belt-like structure on the objects surface, in which the accreted matter steadily spreads in the poleward (me