ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Text Generation by Learning from Search

141   0   0.0 ( 0 )
 نشر من قبل Lili Mou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present TGLS, a novel framework to unsupervised Text Generation by Learning from Search. We start by applying a strong search algorithm (in particular, simulated annealing) towards a heuristically defined objective that (roughly) estimates the quality of sentences. Then, a conditional generative model learns from the search results, and meanwhile smooth out the noise of search. The alternation between search and learning can be repeated for performance bootstrapping. We demonstrate the effectiveness of TGLS on two real-world natural language generation tasks, paraphrase generation and text formalization. Our model significantly outperforms unsupervised baseline methods in both tasks. Especially, it achieves comparable performance with the state-of-the-art supervised methods in paraphrase generation.



قيم البحث

اقرأ أيضاً

133 - Pei Ke , Haozhe Ji , Yu Ran 2021
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pr e-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.
Knowledge graphs (KGs) can vary greatly from one domain to another. Therefore supervised approaches to both graph-to-text generation and text-to-graph knowledge extraction (semantic parsing) will always suffer from a shortage of domain-specific paral lel graph-text data; at the same time, adapting a model trained on a different domain is often impossible due to little or no overlap in entities and relations. This situation calls for an approach that (1) does not need large amounts of annotated data and thus (2) does not need to rely on domain adaptation techniques to work well in different domains. To this end, we present the first approach to unsupervised text generation from KGs and show simultaneously how it can be used for unsupervised semantic parsing. We evaluate our approach on WebNLG v2.1 and a new benchmark leveraging scene graphs from Visual Genome. Our system outperforms strong baselines for both text$leftrightarrow$graph conversion tasks without any manual adaptation from one dataset to the other. In additional experiments, we investigate the impact of using different unsupervised objectives.
We present a self-attention based bilingual adversarial text generator (B-GAN) which can learn to generate text from the encoder representation of an unsupervised neural machine translation system. B-GAN is able to generate a distributed latent space representation which can be paired with an attention based decoder to generate fluent sentences. When trained on an encoder shared between two languages and paired with the appropriate decoder, it can generate sentences in either language. B-GAN is trained using a combination of reconstruction loss for auto-encoder, a cross domain loss for translation and a GAN based adversarial loss for text generation. We demonstrate that B-GAN, trained on monolingual corpora only using multiple losses, generates more fluent sentences compared to monolingual baselines while effectively using half the number of parameters.
Two important tasks at the intersection of knowledge graphs and natural language processing are graph-to-text (G2T) and text-to-graph (T2G) conversion. Due to the difficulty and high cost of data collection, the supervised data available in the two f ields are usually on the magnitude of tens of thousands, for example, 18K in the WebNLG~2017 dataset after preprocessing, which is far fewer than the millions of data for other tasks such as machine translation. Consequently, deep learning models for G2T and T2G suffer largely from scarce training data. We present CycleGT, an unsupervised training method that can bootstrap from fully non-parallel graph and text data, and iteratively back translate between the two forms. Experiments on WebNLG datasets show that our unsupervised model trained on the same number of data achieves performance on par with several fully supervised models. Further experiments on the non-parallel GenWiki dataset verify that our method performs the best among unsupervised baselines. This validates our framework as an effective approach to overcome the data scarcity problem in the fields of G2T and T2G. Our code is available at https://github.com/QipengGuo/CycleGT.
The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا