ﻻ يوجد ملخص باللغة العربية
We consider normal-form games with $n$ players and two strategies for each player, where the payoffs are i.i.d. random variables with some distribution $F$ and we consider issues related to the pure equilibria in the game as the number of players diverges. It is well-known that, if the distribution $F$ has no atoms, the random number of pure equilibria is asymptotically Poisson$(1)$. In the presence of atoms, it diverges. For each strategy profile, we consider the (random) average payoff of the players, called Average Social Utility (ASU). In particular, we examine the asymptotic behavior of the optimum ASU and the one associated to the best and worst pure Nash equilibria and we show that, although these quantities are random, they converge, as $ntoinfty$ to some deterministic quantities.
We prove that every repeated game with countably many players, finite action sets, and tail-measurable payoffs admits an $epsilon$-equilibrium, for every $epsilon > 0$.
We study a static game played by a finite number of agents, in which agents are assigned independent and identically distributed random types and each agent minimizes its objective function by choosing from a set of admissible actions that depends on
We add here another layer to the literature on nonatomic anonymous games started with the 1973 paper by Schmeidler. More specifically, we define a new notion of equilibrium which we call $varepsilon$-estimated equilibrium and prove its existence for
We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player
We address the problem of assessing the robustness of the equilibria in uncertain, multi-agent games. Specifically, we focus on generalized Nash equilibrium problems in aggregative form subject to linear coupling constraints affected by uncertainty w