ترغب بنشر مسار تعليمي؟ اضغط هنا

Political audience diversity and news reliability in algorithmic ranking

130   0   0.0 ( 0 )
 نشر من قبل Giovanni Luca Ciampaglia
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this paper, we propose using the political diversity of a websites audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.



قيم البحث

اقرأ أيضاً

Political polarization appears to be on the rise, as measured by voting behavior, general affect towards opposing partisans and their parties, and contents posted and consumed online. Research over the years has focused on the role of the Web as a dr iver of polarization. In order to further our understanding of the factors behind online polarization, in the present work we collect and analyze Web browsing histories of tens of thousands of users alongside careful measurements of the time spent browsing various news sources. We show that online news consumption follows a polarized pattern, where users visits to news sources aligned with their own political leaning are substantially longer than their visits to other news sources. Next, we show that such preferences hold at the individual as well as the population level, as evidenced by the emergence of clear partisan communities of news domains from aggregated browsing patterns. Finally, we tackle the important question of the role of user choices in polarization. Are users simply following the links proffered by their Web environment, or do they exacerbate partisan polarization by intentionally pursuing like-minded news sources? To answer this question, we compare browsing patterns with the underlying hyperlink structure spanned by the considered news domains, finding strong evidence of polarization in partisan browsing habits beyond that which can be explained by the hyperlink structure of the Web.
Crowdsourcing systems aggregate decisions of many people to help users quickly identify high-quality options, such as the best answers to questions or interesting news stories. A long-standing issue in crowdsourcing is how option quality and human ju dgement heuristics interact to affect collective outcomes, such as the perceived popularity of options. We address this limitation by conducting a controlled experiment where subjects choose between two ranked options whose quality can be independently varied. We use this data to construct a model that quantifies how judgement heuristics and option quality combine when deciding between two options. The model reveals popularity-ranking can be unstable: unless the quality difference between the two options is sufficiently high, the higher quality option is not guaranteed to be eventually ranked on top. To rectify this instability, we create an algorithm that accounts for judgement heuristics to infer the best option and rank it first. This algorithm is guaranteed to be optimal if data matches the model. When the data does not match the model, however, simulations show that in practice this algorithm performs better or at least as well as popularity-based and recency-based ranking for any two-choice question. Our work suggests that algorithms relying on inference of mathematical models of user behavior can substantially improve outcomes in crowdsourcing systems.
Online Social Networks (OSNs) allow personalities and companies to communicate directly with the public, bypassing filters of traditional medias. As people rely on OSNs to stay up-to-date, the political debate has moved online too. We witness the sud den explosion of harsh political debates and the dissemination of rumours in OSNs. Identifying such behaviour requires a deep understanding on how people interact via OSNs during political debates. We present a preliminary study of interactions in a popular OSN, namely Instagram. We take Italy as a case study in the period before the 2019 European Elections. We observe the activity of top Italian Instagram profiles in different categories: politics, music, sport and show. We record their posts for more than two months, tracking likes and comments from users. Results suggest that profiles of politicians attract markedly different interactions than other categories. People tend to comment more, with longer comments, debating for longer time, with a large number of replies, most of which are not explicitly solicited. Moreover, comments tend to come from a small group of very active users. Finally, we witness substantial differences when comparing profiles of different parties.
The novel coronavirus pandemic continues to ravage communities across the US. Opinion surveys identified importance of political ideology in shaping perceptions of the pandemic and compliance with preventive measures. Here, we use social media data t o study complexity of polarization. We analyze a large dataset of tweets related to the pandemic collected between January and May of 2020, and develop methods to classify the ideological alignment of users along the moderacy (hardline vs moderate), political (liberal vs conservative) and science (anti-science vs pro-science) dimensions. While polarization along the science and political dimensions are correlated, politically moderate users are more likely to be aligned with the pro-science views, and politically hardline users with anti-science views. Contrary to expectations, we do not find that polarization grows over time; instead, we see increasing activity by moderate pro-science users. We also show that anti-science conservatives tend to tweet from the Southern US, while anti-science moderates from the Western states. Our findings shed light on the multi-dimensional nature of polarization, and the feasibility of tracking polarized opinions about the pandemic across time and space through social media data.
On social media platforms, like Twitter, users are often interested in gaining more influence and popularity by growing their set of followers, aka their audience. Several studies have described the properties of users on Twitter based on static snap shots of their follower network. Other studies have analyzed the general process of link formation. Here, rather than investigating the dynamics of this process itself, we study how the characteristics of the audience and follower links change as the audience of a user grows in size on the road to users popularity. To begin with, we find that the early followers tend to be more elite users than the late followers, i.e., they are more likely to have verified and expert accounts. Moreover, the early followers are significantly more similar to the person that they follow than the late followers. Namely, they are more likely to share time zone, language, and topics of interests with the followed user. To some extent, these phenomena are related with the growth of Twitter itself, wherein the early followers tend to be the early adopters of Twitter, while the late followers are late adopters. We isolate, however, the effect of the growth of audiences consisting of followers from the growth of Twitters user base itself. Finally, we measure the engagement of such audiences with the content of the followed user, by measuring the probability that an early or late follower becomes a retweeter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا