ترغب بنشر مسار تعليمي؟ اضغط هنا

Origins of Algorithmic Instabilities in Crowdsourced Ranking

111   0   0.0 ( 0 )
 نشر من قبل Keith Burghardt
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Crowdsourcing systems aggregate decisions of many people to help users quickly identify high-quality options, such as the best answers to questions or interesting news stories. A long-standing issue in crowdsourcing is how option quality and human judgement heuristics interact to affect collective outcomes, such as the perceived popularity of options. We address this limitation by conducting a controlled experiment where subjects choose between two ranked options whose quality can be independently varied. We use this data to construct a model that quantifies how judgement heuristics and option quality combine when deciding between two options. The model reveals popularity-ranking can be unstable: unless the quality difference between the two options is sufficiently high, the higher quality option is not guaranteed to be eventually ranked on top. To rectify this instability, we create an algorithm that accounts for judgement heuristics to infer the best option and rank it first. This algorithm is guaranteed to be optimal if data matches the model. When the data does not match the model, however, simulations show that in practice this algorithm performs better or at least as well as popularity-based and recency-based ranking for any two-choice question. Our work suggests that algorithms relying on inference of mathematical models of user behavior can substantially improve outcomes in crowdsourcing systems.



قيم البحث

اقرأ أيضاً

Newsfeed algorithms frequently amplify misinformation and other low-quality content. How can social media platforms more effectively promote reliable information? Existing approaches are difficult to scale and vulnerable to manipulation. In this pape r, we propose using the political diversity of a websites audience as a quality signal. Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards. We then incorporate audience diversity into a standard collaborative filtering framework and show that our improved algorithm increases the trustworthiness of websites suggested to users -- especially those who most frequently consume misinformation -- while keeping recommendations relevant. These findings suggest that partisan audience diversity is a valuable signal of higher journalistic standards that should be incorporated into algorithmic ranking decisions.
Ranking algorithms are being widely employed in various online hiring platforms including LinkedIn, TaskRabbit, and Fiverr. Prior research has demonstrated that ranking algorithms employed by these platforms are prone to a variety of undesirable bias es, leading to the proposal of fair ranking algorithms (e.g., Det-Greedy) which increase exposure of underrepresented candidates. However, there is little to no work that explores whether fair ranking algorithms actually improve real world outcomes (e.g., hiring decisions) for underrepresented groups. Furthermore, there is no clear understanding as to how other factors (e.g., job context, inherent biases of the employers) may impact the efficacy of fair ranking in practice. In this work, we analyze various sources of gender biases in online hiring platforms, including the job context and inherent biases of employers and establish how these factors interact with ranking algorithms to affect hiring decisions. To the best of our knowledge, this work makes the first attempt at studying the interplay between the aforementioned factors in the context of online hiring. We carry out a largescale user study simulating online hiring scenarios with data from TaskRabbit, a popular online freelancing site. Our results demonstrate that while fair ranking algorithms generally improve the selection rates of underrepresented minorities, their effectiveness relies heavily on the job contexts and candidate profiles.
Although it has been notoriously difficult to pin down precisely what it is that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informationa l narrative of living systems suggests that life may be characterized by context-dependent causal influences, and in particular, that top-down (or downward) causation -- where higher-levels influence and constrain the dynamics of lower-levels in organizational hierarchies -- may be a major contributor to the hierarchal structure of living systems. Here we propose that the origin of life may correspond to a physical transition associated with a shift in causal structure, where information gains direct, and context-dependent causal efficacy over the matter it is instantiated in. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some potential novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
Crowdsourcing can be used to determine a total order for an object set (e.g., the top-10 NBA players) based on crowd opinions. This ranking problem is often decomposed into a set of microtasks (e.g., pairwise comparisons). These microtasks are passed to a large number of workers and their answers are aggregated to infer the ranking. The number of microtasks depends on the budget allocated for the problem. Intuitively, the higher the number of microtask answers, the more accurate the ranking becomes. However, it is often hard to decide the budget required for an accurate ranking. We study how a ranking process can be terminated early, and yet achieve a high-quality ranking and great savings in the budget. We use statistical tools to estimate the quality of the ranking result at any stage of the crowdsourcing process and terminate the process as soon as the desired quality is achieved. Our proposed early-stopping module can be seamlessly integrated with most existing inference algorithms and task assignment methods. We conduct extensive experiments and show that our early-stopping module is better than other existing general stopping criteria. We also implement a prototype system to demonstrate the usability and effectiveness of our approach in practice.
Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {em Sybil devices} th at expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا