ﻻ يوجد ملخص باللغة العربية
PSR J1829+2456 is a radio pulsar in a relativistic binary system with another neutron star. It has a rotational period of 41 ms and a mildly eccentric ($e = 0.14$) 28-hr orbit. We have continued its observations with the Arecibo radio telescope and have now measured the individual neutron star masses of this system. The pulsar and companion masses are $1.306,pm,0.007,M_{odot}$ and $1.299,pm,0.007,M_{odot}$ (2$sigma$ - 95% confidence, unless stated otherwise), respectively. We have also measured the proper motion for this system and used it to estimate a space velocity of 49$^{+77}_{-30}$ km s$^{-1}$ with respect to the local standard of rest. The relatively low values for companion mass, space velocity and orbital eccentricity in this system make it similar to other double neutron star systems in which the second-formed neutron star is thought to have formed in a low-kick, low mass-loss, symmetric supernova.
We report the discovery of a new binary pulsar, PSR J1829+2456, found during a mid-latitude drift-scan survey with the Arecibo telescope. Our initial timing observations show the 41-ms pulsar to be in a 28-hr, slightly eccentric, binary orbit. The ad
Two low mass neutron stars, J0737-3039B and the companion to J1756-2251, show strong evidence of being formed from the collapse of an ONeMg core in an electron capture supernova (ECSN) or in an ultra-stripped iron core collapse supernova (FeCCSN). Us
The double pulsar system PSR J0737-3039A/B is a double neutron star binary, with a 2.4-hour orbital period, which has allowed measurement of relativistic orbital perturbations to high precision. The low mass of the second-formed neutron star, as well
The discovery of a radioactively powered kilonova associated with the binary neutron star merger GW170817 was the first - and still only - confirmed electromagnetic counterpart to a gravitational-wave event. However, observations of late-time electro
Close double neutron stars have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational-wave sources. They are believed to have experienced at least one common-envelope episode during thei