ﻻ يوجد ملخص باللغة العربية
Thermal hysteresis is recognized as one of the main drawbacks for cyclical applications of magnetocaloric and ferromagnetic shape memory materials with first order transformations. As such, the challenge is to develop strategies that improve the compatibility between the phases involved in the transitions and study its influence on thermal hysteresis. With this purpose, we explore the thermal, structural and magnetic properties of the Ni2Mn1-xCuxGa0.84Al0.16 Heusler alloys. The alloys present a thermal hysteresis reduction of ~60% when the Cu content in the compound varies from x = 0.10 to x = 0.25, with a minimum hysteresis width of 6 K being achieved. We applied the geometric non-linear theory of martensite to address the phase compatibility, quantified by the parameter lambda2, the middle eigenvalue of the transformation stretch tensor, and found that the minimum of hysteresis is associated with a better crystallographic compatibility (lambda2 closer to 1) between the austenite and martensite phases. In addition, we show that the valley-like properties of hysteresis found in the Ni2Mn1-xCuxGa0.84Al0.16 compounds is present in several other alloys in the literature. These results provide new pathways to understand as well as to masters the phase compatibility and ultimately achieve a low thermal hysteresis in multifunctional Heusler alloys.
First-principles calculations are used in order to investigate phonon anomalies in non-magnetic and magnetic Heusler alloys. Phonon dispersions for several systems in their cubic L2$mathrm{_1}$ structure were obtained along the [110] direction. We co
We present a theoretical proposal for the design of a thermal switch based on the anisotropy of the thermal conductivity of PbTiO3 and of the possibility to rotate the ferroelectric polarization with an external electric field. Our calculations are b
Using first-principles electronic structure calculations, we have studied the dependence of the Curie temperature on external hydrostatic pressure for random Ni2MnSn Heusler alloys doped with Cu and Pd atoms, over the entire range of dopant concentra
Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni$_{54}$Mn$_{23}$Al$_{23}$ Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersi
Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnS