ﻻ يوجد ملخص باللغة العربية
Nonperturbative equations of state (EoSs) for two and three quark flavors are constructed with the functional renormalization group (FRG) within a quark-meson model truncation augmented by vector mesons for low temperature and high density. Based on previous FRG studies without repulsive vector meson interactions the influence of isoscalar vector $omega$- and $phi$-mesons on the dynamical fluctuations of quarks and (pseudo)scalar mesons is investigated. The grand potential as well as vector meson condensates are evaluated as a function of quark chemical potential and the quark matter EoS in $beta$-equilibrium is applied to neutron star (NS) physics. The tidal deformability and mass-radius relations for hybrid stars from combined hadronic and quark matter EoSs are compared for different vector couplings. We observe a significant impact of the vector mesons on the quark matter EoS such that the resulting EoS is sufficiently stiff to support two-solar-mass neutron stars.
We calculate the ground state energy of cold and dense spin polarized quark matter with corrections due to correlation energy $(E_{corr})$. Expressions for $E_{corr}$ both in the non-relativistic and ultra-relativistic regimes have been derived and c
With the recent dawn of the multi-messenger astronomy era a new window has opened to explore the constituents of matter and their interactions under extreme conditions. One of the pending challenges of modern physics is to probe the microscopic equat
The existing theory of hard exclusive QCD processes is based on two assumptions: (i) $factorization$ into a $hard,block$ times light front distribution amplitudes (DAs); (ii) use of perturbative gluon exchanges within the hard block. However, unlike
Heavy-quark effects on the equation of state for cold and dense quark matter are obtained from perturbative QCD, yielding observables parametrized only by the renormalization scale. In particular, we investigate the thermodynamics of charm quark matt
Some time ago we have derived from the QCD Lagrangian an equation of state (EOS) for the cold quark matter, which can be considered an improved version of the MIT bag model EOS. Compared to the latter, our equation of state reaches higher values of t