ﻻ يوجد ملخص باللغة العربية
First-principles calculations and a model consideration of magnetically frustrated layered material PdCrO$_2$ are performed. The results on the exchange parameters are in agreement with the experimental data on the Curie-Weiss temperature ($theta$). We show that experimentally observed strong suppression of the Neel temperature ($T_N$) in comparison with the Curie-Weiss temperature is due to three main factors. First, as expected, this is connected with the layered structure and relatively small exchange interaction along the $c$ axis. Second, deformation of the ideal in-plane 120$^{circ}$ magnetic structure is crucial to provide finite $T_N$ value. However, these two factors are still insufficient to explain low $T_N$ and the large frustration factor $|theta|/T_N$. Thus, we suggest a scenario of an exotic non-Fermi-liquid state in PdCrO$_2$ above $T_N$ within the frameworks of the Anderson lattice model, which seems to explain qualitatively all its main peculiarities.
We have prepared polycrystalline samples of LaSrRh$_{1-x}$Ga$_x$O$_4$ and LaSr$_{1-x}$Ca$_x$RhO$_4$,and have measured the x-ray diffraction, resistivity, Seebeck coefficient, magnetization and electron spin resonance in order to evaluate their electr
Since the discovery of superconductivity in LaFePO in 2006, numerous iron-based superconductors have been identified within diverse structure families, all of which combine iron with a group-V (pnictogen) or group-VI (chalco- gen) element. Unconventi
Electron correlations tend to generate local magnetic moments that usually order if the lattices are not too frustrated. The hexagonal compound SrRu$_2$O$_6$ has a relatively high Neel temperature but small local moments, which seem to be at odds wit
Co$_{1/3}$NbS$_2$ is the only magnetically intercalated layered transition metal dichalcogenide (TMD) suggested to experience the complete suppression of magnetic order under pressure. From elastic neutron scattering we report the direct evidence for
We report low temperature specific heat and muon spin relaxation/rotation ($mu$SR) measurements on both polycrystalline and single crystal samples of the pyrochlore magnet Yb$_2$Ti$_2$O$_7$. This system is believed to possess a spin Hamiltonian suppo