ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized-itinerant dichotomy and unconventional magnetism in SrRu$_2$O$_6$

136   0   0.0 ( 0 )
 نشر من قبل Satoshi Okamoto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron correlations tend to generate local magnetic moments that usually order if the lattices are not too frustrated. The hexagonal compound SrRu$_2$O$_6$ has a relatively high Neel temperature but small local moments, which seem to be at odds with the nominal valence of Ru$^{5+}$ in the $t_{2g}^3$ configuration. Here, we investigate the electronic property of SrRu$_2$O$_6$ using density functional theory (DFT) combined with dynamical-mean-field theory (DMFT). We find that the strong hybridization between Ru $d$ and O $p$ states results in a Ru valence that is closer to $+4$, leading to the small ordered moment $sim1.2mu_B$. While this is consistent with a DFT prediction, correlation effects are found to play a significant role. The local moment per Ru site remains finite $sim2.3mu_B$ in the whole temperature range investigated. Due to the lower symmetry, the $t_{2g}$ manifold is split and the quasiparticle weight is renormalized significantly in the $a_{1g}$ state, while the renormalization in $e_g$ states is about a factor of 2--3 weaker. Our theoretical Neel temperature $sim700$~K is in reasonable agreement with experimental observations. SrRu$_2$O$_6$ is a unique system in which localized and itinerant electrons coexist with the proximity to an orbitally-selective Mott transition within the $t_{2g}$ sector.

قيم البحث

اقرأ أيضاً

The topological property of SrRu$_2$O$_6$ and isostructural CaOs$_2$O$_6$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topol ogical insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$_2$O$_6$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$_2$O$_6$, the desired topological transition does occur under uniform compressive strain. Our study paves a way to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.
94 - W. Tian , C. Svoboda , M. Ochi 2015
The high temperature magnetic order in SrRu$_2$O$_6$ was studied by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu$_2$O$_6$ crystallizes into the hexagonal lead antimonate (PbSb$_2$O$_6$, spa ce group textit{P}$overline{3}$1textit{m}) structure with layers of edge-sharing RuO$_6$ octahedra separated by Sr$^{2+}$ ions. SrRu$_2$O$_6$ orders at $T_N$=565,K with Ru moments coupled antiferromagnetically both in-plane and out-of-plane. The magnetic moment is 1.30(2) $mu_mathrm{B}$/Ru at room temperature and is along the crystallographic textit{c}-axis in the G-type magnetic structure. We performed density functional calculations with constrained RPA to obtain the electronic structure and effective intra- and inter-orbital interaction parameters. The projected density of states show strong hybridization between Ru 4$d$ and O 2$p$. By downfolding to the target $t_{2g}$ bands we extracted the effective magnetic Hamiltonian. We performed Monte Carlo simulations to determine the transition temperature as a function of inter- and intra-plane couplings and find weak inter plane coupling, 3% of the intra-plane coupling, permits three dimensional magnetic order at $T_N$. As suggested by the magnetic susceptibility, two-dimensional correlations persist above $T_N$ due to the strong intra-plane coupling.
93 - L. Shen , M. Laver , E. M. Forgan 2017
We have explored the magnetism in the non-geometrically frustrated spin-chain system $gamma$-CoV$_{2}$O$_{6}$ which possesses a complex magnetic exchange network. Our neutron diffraction patterns at low temperatures ($T$ $leqslant$ $T_{mathrm{N}}$ = 6.6 K) are best described by a model in which two magnetic phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a single spin modulation. This model fits previous studies and our observations better than the model proposed by Lenertz $et$ $al$ in J. Phys. Chem. C 118, 13981 (2014), which consisted of one phase with two spin modulations. By decreasing the temperature from $T_{mathrm{N}}$, the minority phase of our model undergoes an incommensurate-commensurate lock-in transition at $T^{*}$ = 5.6 K. Based on these results, we propose that phase separation is an alternative approach for degeneracy-lifting in frustrated magnets.
The current family of experimentally realized two-dimensional magnetic materials consist of 3$d$ transition metals with very weak spin-orbit coupling. In contrast, we report a new platform in a chemically bonded and layered 4$d$ oxide, with strong el ectron correlations and competing spin-orbit coupling. We synthesize ultra-thin sheets of SrRu$_2$O$_6$ using scalable liquid exfoliation. These exfoliated sheets are characterized by complementary experimental and theoretical techniques. The thickness of the nano-sheets varies between three to five monolayers, and within the first-principles calculations, we show that antiferromagnetism survives in these ultra-thin layers. Experimental data suggest that exfoliation occurs from the planes perpendicular to the $c$-axis as the intervening hexagonal Sr-lattice separates the two-dimensional magnetic honeycomb Ru-layers. The high-resolution transmission electron microscope images indicate that the average inter-atomic spacing between the Ru-layers is slightly reduced, which agrees with the present calculations. The signatures of rotational stacking of the nanosheets are also observed. Such new two-dimensional platform offers enormous possibilities to explore emergent properties that appear due to the interplay between magnetism, strong correlations and spin-orbit coupling. Moreover, these effects can be further tuned as a function of layer thickness.
The dimerized quantum magnet BaCuSi$_2$O$_6$ was proposed as an example of dimensional reduction arising near the magnetic-field-induced quantum critical point (QCP) due to perfect geometrical frustration of its inter-bilayer interactions. We demonst rate by high-resolution neutron spectroscopy experiments that the effective intra-bilayer interactions are ferromagnetic, thereby excluding frustration. We explain the apparent dimensional reduction by establishing the presence of three magnetically inequivalent bilayers, with ratios 3:2:1, whose differing interaction parameters create an extra field-temperature scaling regime near the QCP with a non-trivial but non-universal exponent. We demonstrate by detailed quantum Monte Carlo simulations that the magnetic interaction parameters we deduce can account for all the measured properties of BaCuSi$_2$O$_6$, opening the way to a quantitative understanding of non-universal scaling in any modulated layered system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا