ﻻ يوجد ملخص باللغة العربية
In the last decade, two paradigm shifts have reshaped the software industry - the move from boxed products to services and the widespread adoption of cloud computing. This has had a huge impact on the software development life cycle and the DevOps processes. Particularly, incident management has become critical for developing and operating large-scale services. Incidents are created to ensure timely communication of service issues and, also, their resolution. Prior work on incident management has been heavily focused on the challenges with incident triaging and de-duplication. In this work, we address the fundamental problem of structured knowledge extraction from service incidents. We have built SoftNER, a framework for unsupervised knowledge extraction from service incidents. We frame the knowledge extraction problem as a Named-entity Recognition task for extracting factual information. SoftNER leverages structural patterns like key,value pairs and tables for bootstrapping the training data. Further, we build a novel multi-task learning based BiLSTM-CRF model which leverages not just the semantic context but also the data-types for named-entity extraction. We have deployed SoftNER at Microsoft, a major cloud service provider and have evaluated it on more than 2 months of cloud incidents. We show that the unsupervised machine learning based approach has a high precision of 0.96. Our multi-task learning based deep learning model also outperforms the state of the art NER models. Lastly, using the knowledge extracted by SoftNER we are able to build significantly more accurate models for important downstream tasks like incident triaging.
Eliciting knowledge contained in language models via prompt-based learning has shown great potential in many natural language processing tasks, such as text classification and generation. Whereas, the applications for more complex tasks such as event
Traditionally, fault- or event-tree analyses or FMEAs have been used to estimate the probability of a safety-critical device creating a dangerous condition. However, these analysis techniques are less effective for systems primarily reliant on softwa
Big data analytics is gaining massive momentum in the last few years. Applying machine learning models to big data has become an implicit requirement or an expectation for most analysis tasks, especially on high-stakes applications.Typical applicatio
LocatedNear relation is a kind of commonsense knowledge describing two physical objects that are typically found near each other in real life. In this paper, we study how to automatically extract such relationship through a sentence-level relation cl
Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) wi