ﻻ يوجد ملخص باللغة العربية
We study the precise asymptotic volume of balls in Orlicz spaces and show that the volume of the intersection of two Orlicz balls undergoes a phase transition when the dimension of the ambient space tends to infinity. This generalizes a result of Schechtman and Schmuckenschlager [GAFA, Lecture notes in Math. 1469 (1991), 174--178] for $ell_p^d$-balls. As another application, we determine the precise asymptotic volume ratio for $2$-concave Orlicz spaces $ell_M^d$. Our method rests on ideas from statistical mechanics and large deviations theory, more precisely the maximum entropy or Gibbs principle for non-interacting particles, and presents a natural approach and fresh perspective to such geometric and volumetric questions. In particular, our approach explains how the $p$-generalized Gaussian distribution occurs in problems related to the geometry of $ell_p^d$-balls, which are Orlicz balls when the Orlicz function is $M(t) = |t|^p$.
The unit ball $B_p^n(mathbb{R})$ of the finite-dimensional Schatten trace class $mathcal S_p^n$ consists of all real $ntimes n$ matrices $A$ whose singular values $s_1(A),ldots,s_n(A)$ satisfy $s_1^p(A)+ldots+s_n^p(A)leq 1$, where $p>0$. Saint Raymon
We study the volume of the intersection of two unit balls from one of the classical matrix ensembles GOE, GUE and GSE, as the dimension tends to infinity. This can be regarded as a matrix analogue of a result of Schechtman and Schmuckenschlager for c
In [A dozen de {F}inetti-style results in search of a theory, Ann. Inst. H. Poincar{e} Probab. Statist. 23(2)(1987), 397--423], Diaconis and Freedman studied low-dimensional projections of random vectors from the Euclidean unit sphere and the simplex
In this paper the necessary and sufficient conditions were given for Orlicz-Lorentz function space endowed with the Orlicz norm having non-squareness and local uniform non-squareness.
In this paper, for a locally compact commutative hypergroup $K$ and for a pair $(Phi_1, Phi_2)$ of Young functions satisfying sequence condition, we give a necessary condition in terms of aperiodic elements of the center of $K,$ for the convolution $