ﻻ يوجد ملخص باللغة العربية
We study the volume of the intersection of two unit balls from one of the classical matrix ensembles GOE, GUE and GSE, as the dimension tends to infinity. This can be regarded as a matrix analogue of a result of Schechtman and Schmuckenschlager for classical $ell_p$-balls [Schechtman and Schmuckenschlager, GAFA Lecture Notes, 1991]. The proof of our result is based on two ingredients, which are of independent interest. The first one is a weak law of large numbers for a point chosen uniformly at random in the unit ball of such a matrix ensemble. The second one is an explicit computation of the asymptotic volume of such matrix unit balls, which in turn is based on the theory of logarithmic potentials with external fields.
The unit ball $B_p^n(mathbb{R})$ of the finite-dimensional Schatten trace class $mathcal S_p^n$ consists of all real $ntimes n$ matrices $A$ whose singular values $s_1(A),ldots,s_n(A)$ satisfy $s_1^p(A)+ldots+s_n^p(A)leq 1$, where $p>0$. Saint Raymon
We study the precise asymptotic volume of balls in Orlicz spaces and show that the volume of the intersection of two Orlicz balls undergoes a phase transition when the dimension of the ambient space tends to infinity. This generalizes a result of Sch
The central limit theorem for convex bodies says that with high probability the marginal of an isotropic log-concave distribution along a random direction is close to a Gaussian, with the quantitative difference determined asymptotically by the Cheeg
We study harmonic functions for general Dirichlet forms. First we review consequences of Fukushimas ergodic theorem for the harmonic functions in the domain of the $ L^{p} $ generator. Secondly we prove analogues of Yaus and Karps Liouville theorems
Thurston norms are invariants of 3-manifolds defined on their second homology vector spaces, and understanding the shape of their dual unit ball is a (widely) open problem. W. Thurston showed that every symmetric polygon in Z^2, whose vertices satisf