ﻻ يوجد ملخص باللغة العربية
This paper presents a meta-learning framework for few-shots One-Class Classification (OCC) at test-time, a setting where labeled examples are only available for the positive class, and no supervision is given for the negative example. We consider that we have a set of `one-class classification objective-tasks with only a small set of positive examples available for each task, and a set of training tasks with full supervision (i.e. highly imbalanced classification). We propose an approach using order-equivariant networks to learn a meta binary-classifier. The model will take as input an example to classify from a given task, as well as the corresponding supervised set of positive examples for this OCC task. Thus, the output of the model will be conditioned on the available positive example of a given task, allowing to predict on new tasks and new examples without labeled negative examples. In this paper, we are motivated by an astronomy application. Our goal is to identify if stars belong to a specific stellar group (the one-class for a given task), called textit{stellar streams}, where each stellar stream is a different OCC-task. We show that our method transfers well on unseen (test) synthetic streams, and outperforms the baselines even though it is not retrained and accesses a much smaller part of the data per task to predict (only positive supervision). We see however that it doesnt transfer as well on the real stream GD-1. This could come from intrinsic differences from the synthetic and real stream, highlighting the need for consistency in the nature of the task for this method. However, light fine-tuning improve performances and outperform our baselines. Our experiments show encouraging results to further explore meta-learning methods for OCC tasks.
We present a new approach, called meta-meta classification, to learning in small-data settings. In this approach, one uses a large set of learning problems to design an ensemble of learners, where each learner has high bias and low variance and is sk
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning
Graph classification is a highly impactful task that plays a crucial role in a myriad of real-world applications such as molecular property prediction and protein function prediction.Aiming to handle the new classes with limited labeled graphs, few-s
Graphs are widely used to model the relational structure of data, and the research of graph machine learning (ML) has a wide spectrum of applications ranging from drug design in molecular graphs to friendship recommendation in social networks. Prevai
Few-shot classification refers to learning a classifier for new classes given only a few examples. While a plethora of models have emerged to tackle it, we find the procedure and datasets that are used to assess their progress lacking. To address thi