ﻻ يوجد ملخص باللغة العربية
In this article, we apply the path optimization method to handle the complexified parameters in the 1+1 dimensional pure $U(1)$ gauge theory on the lattice. Complexified parameters make it possible to explore the Lee-Yang zeros which helps us to understand the phase structure and thus we consider the complex coupling constant with the path optimization method in the theory. We clarify the gauge fixing issue in the path optimization method; the gauge fixing helps to optimize the integration path effectively. With the gauge fixing, the path optimization method can treat the complex parameter and control the sign problem. It is the first step to directly tackle the Lee-Yang zero analysis of the gauge theory by using the path optimization method.
A conceptually simple model for strongly interacting compact U(1) lattice gauge theory is expressed as operators acting on qubits. The number of independent gauge links is reduced to its minimum through the use of Gausss law. The model can be impleme
In 4D compact U(1) lattice gauge theory with a monopole term added to the Wilson action we first reveal some properties of a third phase region at negative $beta$. Then at some larger values of the monopole coupling $lambda$ by a finite-size analysis
We investigate four-dimensional compact U(1) lattice gauge theory with a monopole term added to the Wilson action. First we consider the phase structure at negative $beta$, revealing some properties of a third phase region there, in particular the ex
We present numerical results for U(1) gauge theory in 2d and 4d spaces involving a non-commutative plane. Simulations are feasible thanks to a mapping of the non-commutative plane onto a twisted matrix model. In d=2 it was a long-standing issue if Wi
We investigate critical properties of the phase transition in the four-dimensional compact U(1) lattice gauge theory supplemented by a monopole term for values of the monopole coupling $lambda$ such that the transition is of second order. It has been