ﻻ يوجد ملخص باللغة العربية
Integrated photonics has the advantages of miniaturization, low cost, and CMOS compatibility, and it provides a stable, highly integrated, and practical platform for quantum key distribution (QKD). While photonic integration of optical components has greatly reduced the overall cost of QKD systems, single-photon detectors (SPDs) have become the most expensive part of a practical QKD system. In order to circumvent this obstacle and make full use of SPDs, we have designed and fabricated a QKD receiver chip for multiple users. Our chip is based on a time-division multiplexing technique and makes use of a single set of SPDs to support up to four users QKD. Our proof-of-principle chip-based QKD system is capable of producing an average secret key rate of 13.68 kbps for four users with a quantum bit error rate (QBER) as low as 0.51% over a simulated distance of 20 km in fiber. Our result clearly demonstrates the feasibility of multiplexing SPDs for setting QKD channels with different users using photonic integrated chip and may find applications in the commercialization of quantum communication technology.
We present a silicon optical transmitter for polarization-encoded quantum key distribution (QKD). The chip was fabricated in a standard silicon photonic foundry process and integrated a pulse generator, intensity modulator, variable optical attenuato
Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report t
Satellite-based quantum terminals are a feasible way to extend the reach of quantum communication protocols such as quantum key distribution (QKD) to the global scale. To that end, prior demonstrations have shown QKD transmissions from airborne platf
Quantum Key Distribution (QKD) provides an efficient means to exchange information in an unconditionally secure way. Historically, QKD protocols have been based on binary signal formats, such as two polarisation states, and the transmitted informatio
This paper addresses multi-user quantum key distribution networks, in which any two users can mutually exchange a secret key without trusting any other nodes. The same network also supports conventional classical communications by assigning two diffe