ﻻ يوجد ملخص باللغة العربية
This paper addresses multi-user quantum key distribution networks, in which any two users can mutually exchange a secret key without trusting any other nodes. The same network also supports conventional classical communications by assigning two different wavelength bands to quantum and classical signals. Time and code division multiple access (CDMA) techniques, within a passive star network, are considered. In the case of CDMA, it turns out that the optimal performance is achieved at a unity code weight. A listen-before-send protocol is then proposed to improve secret key generation rates in this case. Finally, a hybrid setup with wavelength routers and passive optical networks, which can support a large number of users, is considered and analyzed.
We propose a multiple pulses phase-matching quantum key distribution protocol (MPPM-QKD) to exceed the linear key rate bound and to achieve higher error tolerance. In our protocol, Alice and Bob generate at first their own train pulses (each train sh
Quantum key distribution (QKD) which enables the secure distribution of symmetric keys between two legitimate parties is of great importance in future network security. Access network that connects multiple end-users with one network backbone can be
Integrated photonics has the advantages of miniaturization, low cost, and CMOS compatibility, and it provides a stable, highly integrated, and practical platform for quantum key distribution (QKD). While photonic integration of optical components has
Digital signatures are widely used for providing security of communications. At the same time, the security of currently deployed digital signature protocols is based on unproven computational assumptions. An efficient way to ensure an unconditional
A Quantum Key Distribution (QKD) network is an infrastructure capable of performing long-distance and high-rate secret key agreement with information-theoretic security. In this paper we study security properties of QKD networks based on trusted repe