ﻻ يوجد ملخص باللغة العربية
In recent years, the multiple-stage strategy has become a popular trend for visual tracking. This strategy first utilizes a base tracker to coarsely locate the target and then exploits a refinement module to obtain more accurate results. However, existing refinement modules suffer from the limited transferability and precision. In this work, we propose a novel, flexible and accurate refinement module called Alpha-Refine, which exploits a precise pixel-wise correlation layer together with a spatial-aware non-local layer to fuse features and can predict three complementary outputs: bounding box, corners and mask. To wisely choose the most adequate output, we also design a light-weight branch selector module. We apply the proposed Alpha-Refine module to five famous and state-of-the-art base trackers: DiMP, ATOM, SiamRPN++, RTMDNet and ECO. The comprehensive experiments on TrackingNet, LaSOT and VOT2018 benchmarks demonstrate that our approach significantly improves the tracking performance in comparison with other existing refinement methods. The source codes will be available at https://github.com/MasterBin-IIAU/AlphaRefine.
Visual object tracking aims to precisely estimate the bounding box for the given target, which is a challenging problem due to factors such as deformation and occlusion. Many recent trackers adopt the multiple-stage tracking strategy to improve the q
Weakly-supervised object detection (WSOD) has emerged as an inspiring recent topic to avoid expensive instance-level object annotations. However, the bounding boxes of most existing WSOD methods are mainly determined by precomputed proposals, thereby
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep c
Most existing trackers are based on using a classifier and multi-scale estimation to estimate the target state. Consequently, and as expected, trackers have become more stable while tracking accuracy has stagnated. While trackers adopt a maximum over
We address a problem of estimating pose of a persons head from its RGB image. The employment of CNNs for the problem has contributed to significant improvement in accuracy in recent works. However, we show that the following two methods, despite thei