ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta-SAC: Auto-tune the Entropy Temperature of Soft Actor-Critic via Metagradient

316   0   0.0 ( 0 )
 نشر من قبل Yufei Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Exploration-exploitation dilemma has long been a crucial issue in reinforcement learning. In this paper, we propose a new approach to automatically balance between these two. Our method is built upon the Soft Actor-Critic (SAC) algorithm, which uses an entropy temperature that balances the original task reward and the policy entropy, and hence controls the trade-off between exploitation and exploration. It is empirically shown that SAC is very sensitive to this hyperparameter, and the follow-up work (SAC-v2), which uses constrained optimization for automatic adjustment, has some limitations. The core of our method, namely Meta-SAC, is to use metagradient along with a novel meta objective to automatically tune the entropy temperature in SAC. We show that Meta-SAC achieves promising performances on several of the Mujoco benchmarking tasks, and outperforms SAC-v2 over 10% in one of the most challenging tasks, humanoid-v2.


قيم البحث

اقرأ أيضاً

118 - Yizhou Zhao , Song-Chun Zhu 2020
We generalize the existing principle of the maximum Shannon entropy in reinforcement learning (RL) to weighted entropy by characterizing the state-action pairs with some qualitative weights, which can be connected with prior knowledge, experience rep lay, and evolution process of the policy. We propose an algorithm motivated for self-balancing exploration with the introduced weight function, which leads to state-of-the-art performance on Mujoco tasks despite its simplicity in implementation.
It is difficult to be able to imitate well in unknown states from a small amount of expert data and sampling data. Supervised learning methods such as Behavioral Cloning do not require sampling data, but usually suffer from distribution shift. The me thods based on reinforcement learning, such as inverse reinforcement learning and generative adversarial imitation learning (GAIL), can learn from only a few expert data. However, they often need to interact with the environment. Soft Q imitation learning addressed the problems, and it was shown that it could learn efficiently by combining Behavioral Cloning and soft Q-learning with constant rewards. In order to make this algorithm more robust to distribution shift, we propose Discriminator Soft Actor Critic (DSAC). It uses a reward function based on adversarial inverse reinforcement learning instead of constant rewards. We evaluated it on PyBullet environments with only four expert trajectories.
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle conv ergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
Reinforcement learning (RL) has achieved remarkable performance in numerous sequential decision making and control tasks. However, a common problem is that learned nearly optimal policy always overfits to the training environment and may not be exten ded to situations never encountered during training. For practical applications, the randomness of environment usually leads to some devastating events, which should be the focus of safety-critical systems such as autonomous driving. In this paper, we introduce the minimax formulation and distributional framework to improve the generalization ability of RL algorithms and develop the Minimax Distributional Soft Actor-Critic (Minimax DSAC) algorithm. Minimax formulation aims to seek optimal policy considering the most severe variations from environment, in which the protagonist policy maximizes action-value function while the adversary policy tries to minimize it. Distributional framework aims to learn a state-action return distribution, from which we can model the risk of different returns explicitly, thereby formulating a risk-averse protagonist policy and a risk-seeking adversarial policy. We implement our method on the decision-making tasks of autonomous vehicles at intersections and test the trained policy in distinct environments. Results demonstrate that our method can greatly improve the generalization ability of the protagonist agent to different environmental variations.
Model-free deep reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. However, these methods typically suffer from two major challenges: high sample complexity an d brittleness to hyperparameters. Both of these challenges limit the applicability of such methods to real-world domains. In this paper, we describe Soft Actor-Critic (SAC), our recently introduced off-policy actor-critic algorithm based on the maximum entropy RL framework. In this framework, the actor aims to simultaneously maximize expected return and entropy. That is, to succeed at the task while acting as randomly as possible. We extend SAC to incorporate a number of modifications that accelerate training and improve stability with respect to the hyperparameters, including a constrained formulation that automatically tunes the temperature hyperparameter. We systematically evaluate SAC on a range of benchmark tasks, as well as real-world challenging tasks such as locomotion for a quadrupedal robot and robotic manipulation with a dexterous hand. With these improvements, SAC achieves state-of-the-art performance, outperforming prior on-policy and off-policy methods in sample-efficiency and asymptotic performance. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving similar performance across different random seeds. These results suggest that SAC is a promising candidate for learning in real-world robotics tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا