ﻻ يوجد ملخص باللغة العربية
According to thermodynamics, the inevitable increase of entropy allows the past to be distinguished from the future. From this perspective, any clock must incorporate an irreversible process that allows this flow of entropy to be tracked. In addition, an integral part of a clock is a clockwork, that is, a system whose purpose is to temporally concentrate the irreversible events that drive this entropic flow, thereby increasing the accuracy of the resulting clock ticks compared to counting purely random equilibration events. In this article, we formalise the task of autonomous temporal probability concentration as the inherent goal of any clockwork based on thermal gradients. Within this framework, we show that a perfect clockwork can be approximated arbitrarily well by increasing its complexity. Furthermore, we combine such an idealised clockwork model, comprised of many qubits, with an irreversible decay mechanism to showcase the ultimate thermodynamic limits to the measurement of time.
The second law of classical thermodynamics, based on the positivity of the entropy production, only holds for deterministic processes. Therefore the Second Law in stochastic quantum thermodynamics may not hold. By making a fundamental connection betw
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective for open quantum systems using relative entropy. Specifically, the relative entropy of a quantum state with respect to equilibrium states
To reconstruct thermodynamics based on the microscopic laws is one of the most important unfulfilled goals of statistical physics. Here, we show that the first law and the second law for adiabatic processes are derived from an assumption that probabi
We derive a generalization of the Second Law of Thermodynamics that uses Bayesian updates to explicitly incorporate the effects of a measurement of a system at some point in its evolution. By allowing an experimenters knowledge to be updated by the m
We consider open quantum systems consisting of a finite system of independent fermions with arbitrary Hamiltonian coupled to one or more equilibrium fermion reservoirs (which need not be in equilibrium with each other). A strong form of the third law