ﻻ يوجد ملخص باللغة العربية
We make several improvements to methods for finding integer solutions to $x^3+y^3+z^3=k$ for small values of $k$. We implemented these improvements on Charity Engines global compute grid of 500,000 volunteer PCs and found new representations for several values of $k$, including $k=3$ and $k=42$. This completes the search begun by Miller and Woollett in 1954 and resolves a challenge posed by Mordell in 1953.
We prove a special case of a dynamical analogue of the classical Mordell-Lang conjecture. In particular, let $phi$ be a rational function with no superattracting periodic points other than exceptional points. If the coefficients of $phi$ are algebrai
In this paper, we prove the Uniform Mordell-Lang Conjecture for subvarieties in abelian varieties. As a byproduct, we prove the Uniform Bogomolov Conjecture for subvarieties in abelian varieties.
We give an effective proof of Faltings theorem for curves mapping to Hilbert modular stacks over odd-degree totally real fields. We do this by giving an effective proof of the Shafarevich conjecture for abelian varieties of $mathrm{GL}_2$-type over a
This expository survey is based on my online talk at the ICCM 2020. It aims to sketch key steps of the recent proof of the uniform Mordell-Lang conjecture for curves embedded into Jacobians (a question of Mazur). The full version of this conjecture i
We consider an abelian variety defined over a number field. We give conditional bounds for the order of its Tate-Shafarevich group, as well as conditional bounds for the Neron-Tate height of generators of its Mordell-Weil group. The bounds are implie