ﻻ يوجد ملخص باللغة العربية
This expository survey is based on my online talk at the ICCM 2020. It aims to sketch key steps of the recent proof of the uniform Mordell-Lang conjecture for curves embedded into Jacobians (a question of Mazur). The full version of this conjecture is proved by combining Dimitrov-Gao-Habegger (https://annals.math.princeton.edu/articles/17715) and K{u}hne (arXiv:2101.10272). We include in this survey a detailed proof on how to combine these two results, which was implicitly done in another short paper of Dimitrov-Gao-Habegger (arXiv:2009.08505) but not explicitly written in existing literature. At the end of the survey we state some future aspects.
In this paper, we prove the Uniform Mordell-Lang Conjecture for subvarieties in abelian varieties. As a byproduct, we prove the Uniform Bogomolov Conjecture for subvarieties in abelian varieties.
We prove a special case of a dynamical analogue of the classical Mordell-Lang conjecture. In particular, let $phi$ be a rational function with no superattracting periodic points other than exceptional points. If the coefficients of $phi$ are algebrai
Let $X$ be a curve of genus $ggeq 2$ over a number field $F$ of degree $d = [F:Q]$. The conjectural existence of a uniform bound $N(g,d)$ on the number $#X(F)$ of $F$-rational points of $X$ is an outstanding open problem in arithmetic geometry, known
The aim of this paper is to study a conjecture predicting a lower bound on the canonical height on abelian varieties, formulated by S. Lang and generalized by J. H. Silverman. We give here an asymptotic result on the height of Heegner points on the m
We give an effective proof of Faltings theorem for curves mapping to Hilbert modular stacks over odd-degree totally real fields. We do this by giving an effective proof of the Shafarevich conjecture for abelian varieties of $mathrm{GL}_2$-type over a