ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent developments of the Uniform Mordell-Lang Conjecture

120   0   0.0 ( 0 )
 نشر من قبل Ziyang Gao
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ziyang Gao




اسأل ChatGPT حول البحث

This expository survey is based on my online talk at the ICCM 2020. It aims to sketch key steps of the recent proof of the uniform Mordell-Lang conjecture for curves embedded into Jacobians (a question of Mazur). The full version of this conjecture is proved by combining Dimitrov-Gao-Habegger (https://annals.math.princeton.edu/articles/17715) and K{u}hne (arXiv:2101.10272). We include in this survey a detailed proof on how to combine these two results, which was implicitly done in another short paper of Dimitrov-Gao-Habegger (arXiv:2009.08505) but not explicitly written in existing literature. At the end of the survey we state some future aspects.



قيم البحث

اقرأ أيضاً

In this paper, we prove the Uniform Mordell-Lang Conjecture for subvarieties in abelian varieties. As a byproduct, we prove the Uniform Bogomolov Conjecture for subvarieties in abelian varieties.
We prove a special case of a dynamical analogue of the classical Mordell-Lang conjecture. In particular, let $phi$ be a rational function with no superattracting periodic points other than exceptional points. If the coefficients of $phi$ are algebrai c, we show that the orbit of a point outside the union of proper preperiodic subvarieties of $(bP^1)^g$ has only finite intersection with any curve contained in $(bP^1)^g$. We also show that our result holds for indecomposable polynomials $phi$ with coefficients in $bC$. Our proof uses results from $p$-adic dynamics together with an integrality argument. The extension to polynomials defined over $bC$ uses the method of specializations coupled with some new results of Medvedev and Scanlon for describing the periodic plane curves under the action of $(phi,phi)$ on $bA^2$.
Let $X$ be a curve of genus $ggeq 2$ over a number field $F$ of degree $d = [F:Q]$. The conjectural existence of a uniform bound $N(g,d)$ on the number $#X(F)$ of $F$-rational points of $X$ is an outstanding open problem in arithmetic geometry, known by [CHM97] to follow from the Bombieri--Lang conjecture. A related conjecture posits the existence of a uniform bound $N_{{rm tors},dagger}(g,d)$ on the number of geometric torsion points of the Jacobian $J$ of $X$ which lie on the image of $X$ under an Abel--Jacobi map. For fixed $X$ this quantity was conjectured to be finite by Manin--Mumford, and was proved to be so by Raynaud [Ray83]. We give an explicit uniform bound on $#X(F)$ when $X$ has Mordell--Weil rank $rleq g-3$. This generalizes recent work of Stoll on uniform bounds on hyperelliptic curves of small rank to arbitrary curves. Using the same techniques, we give an explicit, unconditional uniform bound on the number of $F$-rational torsion points of $J$ lying on the image of $X$ under an Abel--Jacobi map. We also give an explicit uniform bound on the number of geometric torsion points of $J$ lying on $X$ when the reduction type of $X$ is highly degenerate. Our methods combine Chabauty--Colemans $p$-adic integration, non-Archimedean potential theory on Berkovich curves, and the theory of linear systems and divisors on metric graphs.
273 - Fabien Pazuki 2015
The aim of this paper is to study a conjecture predicting a lower bound on the canonical height on abelian varieties, formulated by S. Lang and generalized by J. H. Silverman. We give here an asymptotic result on the height of Heegner points on the m odular jacobian $J_{0}(N)$, and we derive non-trivial remarks about the conjecture.
183 - Levent Alpoge 2021
We give an effective proof of Faltings theorem for curves mapping to Hilbert modular stacks over odd-degree totally real fields. We do this by giving an effective proof of the Shafarevich conjecture for abelian varieties of $mathrm{GL}_2$-type over a n odd-degree totally real field. We deduce for example an effective height bound for $K$-points on the curves $C_a : x^6 + 4y^3 = a^2$ ($ain K^times$) when $K$ is odd-degree totally real. (Over $overline{mathbb{Q}}$ all hyperbolic hyperelliptic curves admit an {e}tale cover dominating $C_1$.)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا