ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth mechanism of polymer membranes obtained by H-bonding across immiscible liquid interfaces

113   0   0.0 ( 0 )
 نشر من قبل Thomas Salez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complexation of polymers at liquid interfaces is an emerging technique to produce all-liquid printable and self-healing devices and membranes. It is crucial to control the assembly process but the mechanisms at play remain unclear. Using two different reflectometric methods, we investigate the spontaneous growth of H-bonded PPO-PMAA membranes at a flat liquid-liquid interface. We find that the membrane thickness h grows with time t as h~t^(1/2), which is reminiscent of a diffusion-limited process. However, counter-intuitively, we observe that this process is faster as the PPO molar mass increases. We are able to rationalize these results with a model which considers the diffusion of the PPO chains within the growing membrane. The architecture of the latter is described as a gel-like porous network, with a pore size much smaller than the radius of the diffusing PPO chains, thus inducing entropic barriers that hinder the diffusion process. From the comparison between the experimental data and the result of the model, we extract some key piece of information about the microscopic structure of the membrane. This study opens the route toward the rational design of self-assembled membranes and capsules with optimal properties.

قيم البحث

اقرأ أيضاً

We construct a mean-field formulation of the thermodynamics of ion solvation in immiscible polar binary mixtures. Assuming an equilibrium planar interface separating two semi-infinite regions of different constant dielectric medium, we study the elec trostatic phenomenon of differential adsorption of ions at the interface. Using general thermodynamic considerations, we construct the mean-field $Omega$-potential and demonstrate the spontaneous formation of an electric double-layer around the interface necessarily follow. In our framework, we can also relate both the bulk ion densities in the two phases and the distribution potential across the interface to the fundamental Born free energy of ion polarization. We further illustrate this selective ion adsorption phenomenon in respective examples of fully permeable membranes that are neutral, negative, or positive in charge polarity.
We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with a spect ratio 15:1, and the fluctuation spectrum of interface positions (the capillary wave spectrum) has been analyzed. In addition, the capillary wave spectrum has been calculated analytically within the Landau-de Gennes theory. The theory predicts that the interfacial fluctuations can be described in terms of a wave vector dependent interfacial tension, which is anisotropic at small wavelengths (stiff director regime) and becomes isotropic at large wavelengths (flexible director regime). After determining the elastic constants in the nematic phase, theory and simulation can be compared quantitatively. We obtain good agreement for the stiff director regime. The crossover to the flexible director regime is expected at wavelengths of the order of several thousand particle diameters, which was not accessible to our simulations.
Two-dimensional crystalline membranes have recently been realized experimentally in such systems as graphene and molybdenum disulfide, sparking a resurgence in interest in their statistical properties. Thermal fluctuations can significantly affect th e effective mechanical properties of properly thermalized membranes, renormalizing both bending rigidity and elastic moduli so that in particular they become stiffer to bending than their bare bending rigidity would suggest. We use molecular dynamics simulations to examine how the mechanical behavior of thermalized two-dimensional clamped ribbons (cantilevers) depends on their precise topology and geometry. We find that a simple slit smooths roughness as measured by the variance of height fluctuations. This counterintuitive effect may be due to the counter-posed coupling of the lips of the slit to twist in the intact regions of the ribbon.
The growth mechanisms of MgB2 films obtained by different methods on various substrates are compared via a detailed cross-sectional scanning electron microscopy (SEM) study. The analyzed films include (a) samples obtained by an ex-situ post-anneal at 900 degree of e-beam evaporated boron in the presence of an Mg vapor (exhibiting bulk-like Tc0 about 38.8 K), (b) samples obtained by the same ex-situ 900 degree anneal of pulsed laser deposition (PLD)-grown Mg+B precursors (exhibiting Tc0 ~ 25 K), and (c) films obtained by a low-temperature (600 - 630 degree) in-situ anneal of PLD-grown Mg+B precursors (with Tc0 about 24 K). A significant oxygen contamination was also present in films obtained from a PLD-grown precursors. On the other hand, it is clearly observed that the films obtained by the high-temperature reaction of e-beam evaporated B with Mg vapor are formed by the nucleation of independent MgB2 grains at the film surface, indicating that this approach may not be suitable to obtain smooth and (possibly) epitaxial films.
In the popular solution-diffusion picture, the membrane permeability is defined as the product of the partition ratio and the diffusivity of penetrating solutes inside the membrane in the linear response regime, i.e., in equilibrium. However, of prac tical importance is the penetrants flux across the membrane driven by external forces. Here, we study nonequilibrium membrane permeation orchestrated by a uniform external driving field using molecular computer simulations and continuum (Smoluchowski) theory in the stationary state. In the simulations, we explicitly resolve the penetrants transport across a finite monomer-resolved polymer network, addressing one-component penetrant systems and mixtures. We introduce and discuss possible definitions of nonequilibrium, force-dependent permeability, representing `system and `membrane permeability. In particular, we present for the first time a definition of the differential permeability response to the force. We demonstrate that the latter turns out to be significantly nonlinear for low-permeable systems, leading to a high amount of selectiveness in permeability, called `permselectivity, and is tunable by the driving force. Our continuum-level analytical solutions exhibit remarkable qualitative agreement with the penetrant- and polymer-resolved simulations, thereby allowing us to characterize the underlying mechanism of permeabilities and steady-state transport beyond the linear response level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا