ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparing for the quantum revolution -- what is the role of higher education?

311   0   0.0 ( 0 )
 نشر من قبل Michael Fox
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum sensing, quantum networking and communication, and quantum computing have attracted significant attention recently, as these quantum technologies offer significant advantages over existing technologies. In order to accelerate the commercialization of these quantum technologies the workforce must be equipped with the necessary skills. Through a qualitative study of the quantum industry, in a series of interviews with 21 U.S. companies carried out in Fall 2019, we describe the types of activities being carried out in the quantum industry, profile the types of jobs that exist, and describe the skills valued across the quantum industry, as well as in each type of job. The current routes into the quantum industry are detailed, providing a picture of the current role of higher education in training the quantum workforce. Finally, we present the training and hiring challenges the quantum industry is facing and how higher education may optimize the important role it is currently playing.



قيم البحث

اقرأ أيضاً

Understanding the human brain remains one of the most significant challenges of the 21st century. As theoretical studies continue to improve the description of the complex mechanisms that regulate biological processes, in parallel numerous experiment s are conducted to enrich or verify these theoretical predictions and with the aim of extrapolating more accurate models. In the field of magnetometers for biological application, among the various sensors proposed for this purpose, NV centers have emerged as a promising solution due to their perfect biocompatibility and the possibility of being positioned in close proximity and even inside the cell, allowing a nanometric spatial resolution. There are still many difficulties that must be overcome in order to obtain both spatial resolution and sensitivity capable of revealing the very weak biological electromagnetic fields generated by neurons (or other cells). However, over the last few years, significant improvements have been achieved in this direction, thanks to the use of innovative techniques, which allow us to hope for an early application of these sensors for the measurement of fields such as the one generated by cardiac tissue, if not, in perspective, for the nerve fibers fields. In this review, we will analyze the new results regarding the application of NV centers and we will discuss the main challenges that currently prevent these quantum sensors from reaching their full potential.
This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called lq microscopic theory (MIQM), applicable to any closed system $S$ of arbitrary size $N$, using concepts referring to $S$ alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleasons theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.
113 - Kirk D. Borne 2009
As our capacity to study ever-expanding domains of our science has increased (including the time domain, non-electromagnetic phenomena, magnetized plasmas, and numerous sky surveys in multiple wavebands with broad spatial coverage and unprecedented d epths), so have the horizons of our understanding of the Universe been similarly expanding. This expansion is coupled to the exponential data deluge from multiple sky surveys, which have grown from gigabytes into terabytes during the past decade, and will grow from terabytes into Petabytes (even hundreds of Petabytes) in the next decade. With this increased vastness of information, there is a growing gap between our awareness of that information and our understanding of it. Training the next generation in the fine art of deriving intelligent understanding from data is needed for the success of sciences, communities, projects, agencies, businesses, and economies. This is true for both specialists (scientists) and non-specialists (everyone else: the public, educators and students, workforce). Specialists must learn and apply new data science research techniques in order to advance our understanding of the Universe. Non-specialists require information literacy skills as productive members of the 21st century workforce, integrating foundational skills for lifelong learning in a world increasingly dominated by data. We address the impact of the emerging discipline of data science on astronomy education within two contexts: formal education and lifelong learners.
Quantum information science and technology (QIST) has progressed significantly in the last decade, such that it is no longer solely in the domain of research labs, but is now beginning to be developed for, and applied in, industrial applications and products. With the emergence of this new quantum industry, a new workforce trained in QIST skills and knowledge is needed. To help support education and training of this workforce, universities and colleges require knowledge of the type of jobs available for their students and what skills and degrees are most relevant for those new jobs. Additionally, students need to know how to tailor their degrees to best align with the current needs of the quantum industry. We report on the results from a survey of 57 companies in the quantum industry, with the goal of elucidating the jobs, skills, and degrees that are relevant for this new workforce. We find a range of job opportunities from highly specific jobs, such as quantum algorithm developer and error correction scientist, to broader jobs categories within the business, software, and hardware sectors. These broader jobs require a range of skills, most of which are not quantum related. Further, except for the highly specific jobs, companies that responded to the survey are looking for a range of degree levels to fill these new positions, from bachelors to masters to PhDs. With this knowledge, students, instructors, and university administrators can make informed decisions about how to address the challenge of increasing the future quantum workforce.
211 - Sun Kwok 2018
The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit thei r needs. Advances in technology also make certain modes of learning obsolete. In the last 10 years, the Faculty of Science of the University of Hong Kong has undertaken major curriculum reforms. A sequence of science foundation courses required of all incoming science students are designed to teach science in an integrated manner, and to emphasize the concepts and utilities, not computational techniques, of mathematics. A number of non-discipline specific common core courses have been developed to broaden students awareness of the relevance of science to society and the interdisciplinary nature of science. By putting the emphasis on the scientific process rather than the outcome, students are taught how to identify, formulate, and solve diverse problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا