ترغب بنشر مسار تعليمي؟ اضغط هنا

The Revolution in Astronomy Education: Data Science for the Masses

128   0   0.0 ( 0 )
 نشر من قبل Kirk D. Borne
 تاريخ النشر 2009
والبحث باللغة English
 تأليف Kirk D. Borne




اسأل ChatGPT حول البحث

As our capacity to study ever-expanding domains of our science has increased (including the time domain, non-electromagnetic phenomena, magnetized plasmas, and numerous sky surveys in multiple wavebands with broad spatial coverage and unprecedented depths), so have the horizons of our understanding of the Universe been similarly expanding. This expansion is coupled to the exponential data deluge from multiple sky surveys, which have grown from gigabytes into terabytes during the past decade, and will grow from terabytes into Petabytes (even hundreds of Petabytes) in the next decade. With this increased vastness of information, there is a growing gap between our awareness of that information and our understanding of it. Training the next generation in the fine art of deriving intelligent understanding from data is needed for the success of sciences, communities, projects, agencies, businesses, and economies. This is true for both specialists (scientists) and non-specialists (everyone else: the public, educators and students, workforce). Specialists must learn and apply new data science research techniques in order to advance our understanding of the Universe. Non-specialists require information literacy skills as productive members of the 21st century workforce, integrating foundational skills for lifelong learning in a world increasingly dominated by data. We address the impact of the emerging discipline of data science on astronomy education within two contexts: formal education and lifelong learners.



قيم البحث

اقرأ أيضاً

137 - Kirk D. Borne 2009
Data volumes from multiple sky surveys have grown from gigabytes into terabytes during the past decade, and will grow from terabytes into tens (or hundreds) of petabytes in the next decade. This exponential growth of new data both enables and challen ges effective astronomical research, requiring new approaches. Thus far, astronomy has tended to address these challenges in an informal and ad hoc manner, with the necessary special expertise being assigned to e-Science or survey science. However, we see an even wider scope and therefore promote a broader vision of this data-driven revolution in astronomical research. For astronomy to effectively cope with and reap the maximum scientific return from existing and future large sky surveys, facilities, and data-producing projects, we need our own information science specialists. We therefore recommend the formal creation, recognition, and support of a major new discipline, which we call Astroinformatics. Astroinformatics includes a set of naturally-related specialties including data organization, data description, astronomical classification taxonomies, astronomical concept ontologies, data mining, machine learning, visualization, and astrostatistics. By virtue of its new stature, we propose that astronomy now needs to integrate Astroinformatics as a formal sub-discipline within agency funding plans, university departments, research programs, graduate training, and undergraduate education. Now is the time for the recognition of Astroinformatics as an essential methodology of astronomical research. The future of astronomy depends on it.
273 - Dara Norman 2009
The NSFs Astronomy and Astrophysics Postdoctoral Fellowship (AAPF) is exceptional among the available postdoctoral awards in Astronomy and Astrophysics. The fellowship is one of the few that allows postdoctoral researchers to pursue an original resea rch program, of their own design, at the U.S. institution of their choice. However, what makes this fellowship truly unique is the ability of Fellows to lead an equally challenging, original educational program simultaneously. The legacy of this singular fellowship has been to encourage and advance leaders in the field who are equally as passionate about their own research as they are about sharing that research and their passion for astronomy with students and the public. In this positional paper we address the importance of fellowships like the AAPF to the astronomical profession by identifying the science and educational contributions that Fellows have made to the community. Further, we recommend that fellowships that encourage leading postdoctoral researchers to also become leaders in Astronomy education be continued and expanded.
344 - T.Bretz , H.Anderhub , M.Backes 2014
Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detect ors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.
Hundreds of thousands of astronomy education activities exist, but their discoverability and quality is highly variable. The web platform for astronomy education activities, astroEDU, presented in this paper tries to solve these issues. Using the fam iliar peer-review workflow of scientific publications, astroEDU is improving standards of quality, visibility and accessibility, while providing credibility to these astronomy education activities. astroEDU targets activity guides, tutorials and other educational activities in the area of astronomy education, prepared by teachers, educators and other education specialists. Each of the astroEDU activities is peer-reviewed by an educator as well as an astronomer to ensure a high standard in terms of scientific content and educational value. All reviewed materials are then stored in a free open online database, enabling broad distribution in a range of different formats. In this way astroEDU is not another web repository for educational resources but a mechanism for peer-reviewing and publishing high-quality astronomy education activities in an open access way. This paper will provide an account on the implementation and first findings of the use of astroEDU.
Astronomers have played many roles in their engagement with the larger astronomy education ecosystem. Their activities have served both the formal and informal education communities worldwide, with levels of involvement from the occasional participan t to the full-time professional. We discuss these many diverse roles, giving background, context, and perspective on their value in encouraging and improving astronomy education. This review covers the large amounts of new research on best practices for diverse learning environments. For the formal education learning environment, we cover pre-university roles and engagement activities. This evidence-based perspective can support astronomers in contributing to the broad astronomy education ecosystem in more productive and efficient ways and in identifying new niches and approaches for developing the science capital necessary for a science literate society and for greater involvement of underrepresented groups in the science enterprise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا