ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral Analysis

140   0   0.0 ( 0 )
 نشر من قبل Rui Zhao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural network (CNN)-based image denoising methods have been widely studied recently, because of their high-speed processing capability and good visual quality. However, most of the existing CNN-based denoisers learn the image prior from the spatial domain, and suffer from the problem of spatially variant noise, which limits their performance in real-world image denoising tasks. In this paper, we propose a discrete wavelet denoising CNN (WDnCNN), which restores images corrupted by various noise with a single model. Since most of the content or energy of natural images resides in the low-frequency spectrum, their transformed coefficients in the frequency domain are highly imbalanced. To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum. Moreover, we employ a band discriminative training (BDT) criterion to enhance the model regression. We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers. Experimental results show that WDnCNN achieves promising performance in both synthetic and real noise reduction, making it a potential solution to many practical image denoising applications.



قيم البحث

اقرأ أيضاً

Hyperspectral image (HSI) classification has been widely adopted in applications involving remote sensing imagery analysis which require high classification accuracy and real-time processing speed. Methods based on Convolutional neural networks (CNNs ) have been proven to achieve state-of-the-art accuracy in classifying HSIs. However, CNN models are often too computationally intensive to achieve real-time response due to the high dimensional nature of HSI, compared to traditional methods such as Support Vector Machines (SVMs). Besides, previous CNN models used in HSI are not specially designed for efficient implementation on embedded devices such as FPGAs. This paper proposes a novel CNN-based algorithm for HSI classification which takes into account hardware efficiency. A customized architecture which enables the proposed algorithm to be mapped effectively onto FPGA resources is then proposed to support real-time on-board classification with low power consumption. Implementation results show that our proposed accelerator on a Xilinx Zynq 706 FPGA board achieves more than 70x faster than an Intel 8-core Xeon CPU and 3x faster than an NVIDIA GeForce 1080 GPU. Compared to previous SVM-based FPGA accelerators, we achieve comparable processing speed but provide a much higher classification accuracy.
This paper presents a framework for Convolutional Neural Network (CNN)-based quality enhancement task, by taking advantage of coding information in the compressed video signal. The motivation is that normative decisions made by the encoder can signif icantly impact the type and strength of artifacts in the decoded images. In this paper, the main focus has been put on decisions defining the prediction signal in intra and inter frames. This information has been used in the training phase as well as input to help the process of learning artifacts that are specific to each coding type. Furthermore, to retain a low memory requirement for the proposed method, one model is used for all Quantization Parameters (QPs) with a QP-map, which is also shared between luma and chroma components. In addition to the Post Processing (PP) approach, the In-Loop Filtering (ILF) codec integration has also been considered, where the characteristics of the Group of Pictures (GoP) are taken into account to boost the performance. The proposed CNN-based Quality Enhancement(QE) framework has been implemented on top of the VVC Test Model (VTM-10). Experiments show that the prediction-aware aspect of the proposed method improves the coding efficiency gain of the default CNN-based QE method by 1.52%, in terms of BD-BR, at the same network complexity compared to the default CNN-based QE filter.
Multi-class segmentation of cardiac magnetic resonance (CMR) images seeks a separation of data into anatomical components with known structure and configuration. The most popular CNN-based methods are optimised using pixel wise loss functions, ignora nt of the spatially extended features that characterise anatomy. Therefore, whilst sharing a high spatial overlap with the ground truth, inferred CNN-based segmentations can lack coherence, including spurious connected components, holes and voids. Such results are implausible, violating anticipated anatomical topology. In response, (single-class) persistent homology-based loss functions have been proposed to capture global anatomical features. Our work extends these approaches to the task of multi-class segmentation. Building an enriched topological description of all class labels and class label pairs, our loss functions make predictable and statistically significant improvements in segmentation topology using a CNN-based post-processing framework. We also present (and make available) a highly efficient implementation based on cubical complexes and parallel execution, enabling practical application within high resolution 3D data for the first time. We demonstrate our approach on 2D short axis and 3D whole heart CMR segmentation, advancing a detailed and faithful analysis of performance on two publicly available datasets.
102 - Jian Yue , Yanbo Gao , Shuai Li 2021
In-loop filtering is used in video coding to process the reconstructed frame in order to remove blocking artifacts. With the development of convolutional neural networks (CNNs), CNNs have been explored for in-loop filtering considering it can be trea ted as an image de-noising task. However, in addition to being a distorted image, the reconstructed frame is also obtained by a fixed line of block based encoding operations in video coding. It carries coding-unit based coding distortion of some similar characteristics. Therefore, in this paper, we address the filtering problem from two aspects, global appearance restoration for disrupted texture and local coding distortion restoration caused by fixed pipeline of coding. Accordingly, a three-stream global appearance and local coding distortion based fusion network is developed with a high-level global feature stream, a high-level local feature stream and a low-level local feature stream. Ablation study is conducted to validate the necessity of different features, demonstrating that the global features and local features can complement each other in filtering and achieve better performance when combined. To the best of our knowledge, we are the first one that clearly characterizes the video filtering process from the above global appearance and local coding distortion restoration aspects with experimental verification, providing a clear pathway to developing filter techniques. Experimental results demonstrate that the proposed method significantly outperforms the existing single-frame based methods and achieves 13.5%, 11.3%, 11.7% BD-Rate saving on average for AI, LDP and RA configurations, respectively, compared with the HEVC reference software.
Purpose: The research is to develop a novel CNN-based adversarial deep learning method to improve and expedite the multi-organ semantic segmentation of CT images, and to generate accurate contours on pelvic CT images. Methods: Planning CT and structu re datasets for 120 patients with intact prostate cancer were retrospectively selected and divided for 10-fold cross-validation. The proposed adversarial multi-residual multi-scale pooling Markov Random Field (MRF) enhanced network (ARPM-net) implements an adversarial training scheme. A segmentation network and a discriminator network were trained jointly, and only the segmentation network was used for prediction. The segmentation network integrates a newly designed MRF block into a variation of multi-residual U-net. The discriminator takes the product of the original CT and the prediction/ground-truth as input and classifies the input into fake/real. The segmentation network and discriminator network can be trained jointly as a whole, or the discriminator can be used for fine-tuning after the segmentation network is coarsely trained. Multi-scale pooling layers were introduced to preserve spatial resolution during pooling using less memory compared to atrous convolution layers. An adaptive loss function was proposed to enhance the training on small or low contrast organs. The accuracy of modeled contours was measured with the Dice similarity coefficient (DSC), Average Hausdorff Distance (AHD), Average Surface Hausdorff Distance (ASHD), and relative Volume Difference (VD) using clinical contours as references to the ground-truth. The proposed ARPM-net method was compared to several stateof-the-art deep learning methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا