ﻻ يوجد ملخص باللغة العربية
Interferometric scattering (iSCAT) microscopy is an emerging label-free technique optimized for the sensitive detection of nano-matter. Previous iSCAT studies have approximated the point spread function in iSCAT by a Gaussian intensity distribution. However, recent efforts to track the mobility of nanoparticles in challenging speckle environments and over extended axial ranges has necessitated a quantitative description of the interferometric point spread function (iPSF). We present a robust vectorial diffraction model for the iPSF in tandem with experimental measurements and rigorous FDTD simulations. We examine the iPSF under various imaging scenarios to understand how aberrations due to the experimental configuration encode information about the nanoparticle. We show that the lateral shape of the iPSF can be used to achieve nanometric three-dimensional localization over an extended axial range on the order of 10$,mu$m either by means of a fit to an analytical model or calibration-free unsupervised machine learning. Our results have immediate implications for three-dimensional single particle tracking in complex scattering media.
In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the res
Interferometric scattering microscopy has been a very promising technology for highly sensitive label-free imaging of a broad spectrum of biological nanoparticles from proteins to viruses in a high-throughput manner. Although it can reveal the specim
Localization microscopy is an imaging technique in which the positions of individual nanoscale point emitters (e.g. fluorescent molecules) are determined at high precision from their images. This is the key ingredient in single/multiple-particle-trac
One of the problems often encountered in X-ray mirror manufacturing is setting proper manufacturing tolerances to guarantee an angular resolution - often expressed in terms of Point Spread Function (PSF) - as needed by the specific science goal. To d
Here, we report analysis and summary of research in the field of localization microscopy for optical imaging. We introduce the basic elements of super-resolved localization microscopy methods for PALM and STORM, commonly used both in vivo and in vitr