ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Rates of Two-Component MCMC Samplers

92   0   0.0 ( 0 )
 نشر من قبل Qian Qin
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Component-wise MCMC algorithms, including Gibbs and conditional Metropolis-Hastings samplers, are commonly used for sampling from multivariate probability distributions. A long-standing question regarding Gibbs algorithms is whether a deterministic-scan (systematic-scan) sampler converges faster than its random-scan counterpart. We answer this question when the samplers involve two components by establishing an exact quantitative relationship between the $L^2$ convergence rates of the two samplers. The relationship shows that the deterministic-scan sampler converges faster. We also establish qualitative relations among the convergence rates of two-component Gibbs samplers and some conditional Metropolis-Hastings variants. For instance, it is shown that if some two-component conditional Metropolis-Hastings samplers are geometrically ergodic, then so are the associated Gibbs samplers.



قيم البحث

اقرأ أيضاً

198 - Yehua Li , Tailen Hsing 2012
We consider nonparametric estimation of the mean and covariance functions for functional/longitudinal data. Strong uniform convergence rates are developed for estimators that are local-linear smoothers. Our results are obtained in a unified framework in which the number of observations within each curve/cluster can be of any rate relative to the sample size. We show that the convergence rates for the procedures depend on both the number of sample curves and the number of observations on each curve. For sparse functional data, these rates are equivalent to the optimal rates in nonparametric regression. For dense functional data, root-n rates of convergence can be achieved with proper choices of bandwidths. We further derive almost sure rates of convergence for principal component analysis using the estimated covariance function. The results are illustrated with simulation studies.
The emergence of big data has led to a growing interest in so-called convergence complexity analysis, which is the study of how the convergence rate of a Monte Carlo Markov chain (for an intractable Bayesian posterior distribution) scales as the unde rlying data set grows in size. Convergence complexity analysis of practical Monte Carlo Markov chains on continuous state spaces is quite challenging, and there have been very few successful analyses of such chains. One fruitful analysis was recently presented by Qin and Hobert (2021b), who studied a Gibbs sampler for a simple Bayesian random effects model. These authors showed that, under regularity conditions, the geometric convergence rate of this Gibbs sampler converges to zero as the data set grows in size. It is shown herein that similar behavior is exhibited by Gibbs samplers for more general Bayesian models that possess both random effects and traditional continuous covariates, the so-called mixed models. The analysis employs the Wasserstein-based techniques introduced by Qin and Hobert (2021b).
In functional linear regression, the slope ``parameter is a function. Therefore, in a nonparametric context, it is determined by an infinite number of unknowns. Its estimation involves solving an ill-posed problem and has points of contact with a ran ge of methodologies, including statistical smoothing and deconvolution. The standard approach to estimating the slope function is based explicitly on functional principal components analysis and, consequently, on spectral decomposition in terms of eigenvalues and eigenfunctions. We discuss this approach in detail and show that in certain circumstances, optimal convergence rates are achieved by the PCA technique. An alternative approach based on quadratic regularisation is suggested and shown to have advantages from some points of view.
428 - Clifford Lam , Jianqing Fan 2009
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that ar e zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order $(s_nlog p_n/n)^{1/2}$, where $s_n$ is the number of nonzero elements, $p_n$ is the size of the covariance matrix and $n$ is the sample size. This explicitly spells out the contribution of high-dimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter $lambda_n$ goes to 0 have been made explicit and compared under different penalties. As a result, for the $L_1$-penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: $s_n=O(p_n)$ at most, among $O(p_n^2)$ parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where $s_n$ is the number of the nonzero elements on the off-diagonal entries. On the other hand, using the SCAD or hard-thresholding penalty functions, there is no such a restriction.
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for models including the mixture of Dirichlet process model and the random Bernstein polynomial model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا