ﻻ يوجد ملخص باللغة العربية
The Baillie-PSW primality test combines Fermat and Lucas probable prime tests. It reports that a number is either composite or probably prime. No odd composite integer has been reported to pass this combination of primality tests if the parameters are chosen in an appropriate way. Here, we describe a significant strengthening of this test that comes at almost no additional computational cost. This is achieved by including in the test what we call Lucas-V pseudoprimes, of which there are only five less than $10^{15}$.
We give a deterministic algorithm that very quickly proves the primality or compositeness of the integers N in a certain sequence, using an elliptic curve E/Q with complex multiplication by the ring of integers of Q(sqrt(-7)). The algorithm uses O(lo
We provide a framework for using elliptic curves with complex multiplication to determine the primality or compositeness of integers that lie in special sequences, in deterministic quasi-quadratic time. We use this to find large primes, including the
We explain why the first Galbraith-Petit-Shani-Ti attack on the Supersingular Isogeny Diffie-Hellman and the Supersingular Isogeny Key Encapsulation fails in some cases.
A new method is used to resolve a long-standing conjecture of Niho concerning the crosscorrelation spectrum of a pair of maximum length linear recursive sequences of length $2^{2 m}-1$ with relative decimation $d=2^{m+2}-3$, where $m$ is even. The re
For a prime $pge 5$ let $q_0,q_1,ldots,q_{(p-3)/2}$ be the quadratic residues modulo $p$ in increasing order. We study two $(p-3)/2$-periodic binary sequences $(d_n)$ and $(t_n)$ defined by $d_n=q_n+q_{n+1}bmod 2$ and $t_n=1$ if $q_{n+1}=q_n+1$ and $