ﻻ يوجد ملخص باللغة العربية
We give a deterministic algorithm that very quickly proves the primality or compositeness of the integers N in a certain sequence, using an elliptic curve E/Q with complex multiplication by the ring of integers of Q(sqrt(-7)). The algorithm uses O(log N) arithmetic operations in the ring Z/NZ, implying a bit complexity that is quasi-quadratic in log N. Notably, neither of the classical N-1 or N+1 primality tests apply to the integers in our sequence. We discuss how this algorithm may be applied, in combination with sieving techniques, to efficiently search for very large primes. This has allowed us to prove the primality of several integers with more than 100,000 decimal digits, the largest of which has more than a million bits in its binary representation. At the time it was found, it was the largest proven prime N for which no significant partial factorization of N-1 or N+1 is known.
We provide a framework for using elliptic curves with complex multiplication to determine the primality or compositeness of integers that lie in special sequences, in deterministic quasi-quadratic time. We use this to find large primes, including the
In this paper, we derive some identities involving special numbers and moments of random variables by using the generating functions of the moments of certain random variables. Here the related special numbers are Stirling numbers of the first and se
The Baillie-PSW primality test combines Fermat and Lucas probable prime tests. It reports that a number is either composite or probably prime. No odd composite integer has been reported to pass this combination of primality tests if the parameters ar
The Mordell-Weil groups $E(mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(mathbb{Q})$ and the ideal class groups $mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) in mathbb{Z}^2$, we def
Let $E_1$ and $E_2$ be $overline{mathbb{Q}}$-nonisogenous, semistable elliptic curves over $mathbb{Q}$, having respective conductors $N_{E_1}$ and $N_{E_2}$ and both without complex multiplication. For each prime $p$, denote by $a_{E_i}(p) := p+1-#E_