ﻻ يوجد ملخص باللغة العربية
Seven-point functions have two inequivalent topologies or channels. The comb channel has been computed previously and here we compute scalar conformal blocks in the extended snowflake channel in $d$ dimensions. Our computation relies on the known action of the differential operator that sets up the operator product expansion in embedding space. The scalar conformal blocks in the extended snowflake channel are obtained as a power series expansion in the conformal cross-ratios whose coefficients are a triple sum of the hypergeometric type. This triple sum factorizes into a single sum and a double sum. The single sum can be seen as originating from the comb channel and is given in terms of a ${}_3F_2$-hypergeometric function, while the double sum originates from the snowflake channel which corresponds to a Kampe de Feriet function. We verify that our results satisfy the symmetry properties of the extended snowflake topology. Moreover, we check that the behavior of the extended snowflake conformal blocks under several limits is consistent with known results. Finally, we conjecture rules leading to a partial construction of scalar $M$-point conformal blocks in arbitrary topologies.
We compute $d$-dimensional scalar six-point conformal blocks in the two possible topologies allowed by the operator product expansion. Our computation is a simple application of the embedding space operator product expansion formalism developed recen
We compute $M$-point conformal blocks with scalar external and exchange operators in the so-called comb configuration for any $M$ in any dimension $d$. Our computation involves repeated use of the operator product expansion to increase the number of
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera
We introduce a full set of rules to directly express all $M$-point conformal blocks in one- and two-dimensional conformal field theories, irrespective of the topology. The $M$-point conformal blocks are power series expansion in some carefully-chosen