ترغب بنشر مسار تعليمي؟ اضغط هنا

Dome C coherence time statistics from DIMM data

47   0   0.0 ( 0 )
 نشر من قبل Eric Aristidi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a reanalysis of several years of DIMM data at the site of Dome C, Antarctica, to provide measurements of the coherence time $tau_0$. Statistics and seasonal behaviour of $tau_0$ are given at two heights above the ground, 3m and 8m, for the wavelength $lambda=500$nm. We found an annual median value of $2.9$ms at the height of 8m. A few measurements could also be obtained at the height of 20m and give a median value of 6ms during the period June--September. For the first time, we provide measurements of $tau_0$ in daytime during the summer, which appears to show the same time dependence as the seeing with a sharp maximum at 5pm local time. Exceptional values of $tau_0$ above 10ms are met at this particular moment. The continuous slow variations of turbulence conditions during the day offers a natural test bed for a solar adaptive optics system.

قيم البحث

اقرأ أيضاً

This paper analyses 3.5 years of site testing data obtained at Dome C, Antarctica, based on measurements obtained with three DIMMs located at three different elevations. Basic statistics of the seeing and the isoplanatic angle are given, as well as t he characteristic time of temporal fluctuations of these two parameters, which we found to around 30 minutes at 8 m. The 3 DIMMs are exploited as a profiler of the surface layer, and provide a robust estimation of its statistical properties. It appears to have a very sharp upper limit (less than 1 m). The fraction of time spent by each telescope above the top of the surface layer permits us to deduce a median height of between 23 m and 27 m. The comparison of the different data sets led us to infer the statistical properties of the free atmosphere seeing, with a median value of 0.36 arcsec. The C_n^2 profile inside the surface layer is also deduced from the seeing data obtained during the fraction of time spent by the 3 telescopes inside this turbulence. Statistically, the surface layer, except during the 3-month summer season, contributes to 95 percent of the total turbulence from the surface level, thus confirming the exceptional quality of the site above it.
We present long term site testing statistics obtained at Dome C, Antarctica with various experiments deployed within the Astroconcordia programme since 2003. We give values of integrated turbulence parameters in the visible at ground level and above the surface layer, vertical profiles of the structure constant Cn2 and a statistics of the thickness of the turbulent surface layer.
In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature an d wind speed, from which the optical turbulence depends on) as well as the Cn2 profiles above Dome C were correctly statistically reproduced. The three most important derived parameters that characterize the optical turbulence above the internal antarctic plateau: the surface layer thickness, the seeing in the free-atmosphere and in the total atmosphere showed to be in a very good agreement with observations. Validation of Cn2 has been performed using all the measurements of the optical turbulence vertical distribution obtained in winter so far. In this paper, in order to investigate the ability of the model to discriminate between different turbulence conditions for site testing, we extend the study to two other potential astronomical sites in Antarctica: Dome A and South Pole, which we expect to be characterized by different turbulence conditions. The optical turbulence has been calculated above these two sites for the same 15 nights studied for Dome C and a comparison between the three sites has been performed.
100 - Nicolas Crouzet 2010
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88degree x 3.88degree field of view t o perform photometry of several thousand stars at visible wavelengths (700-900 nm). The first winter campaign in 2008 led to the retrieval of nearly 1600 hours of data. We derive the fraction of photometric nights by measuring the number of detectable stars in the field. The method is sensitive to the presence of small cirrus clouds which are invisible to the naked eye. The fraction of night-time for which at least 50% of the stars are detected is 74% from June to September 2008. Most of the lost time (18.5% out of 26%) is due to periods of bad weather conditions lasting for a few days (white outs). Extended periods of clear weather exist. For example, between July 10 and August 10, 2008, the total fraction of time (day+night) for which photometric observations were possible was 60%. This confirms the very high quality of Dome C for nearly continuous photometric observations during the Antarctic winter.
To evaluate site quality and to develop multi-conjugative adaptive optics systems for future large solar telescopes, characterization of contributions to seeing from heights up to at least 12 km above the telescope is needed. We describe a method for evaluating contributions to seeing from different layers along the line-of-sight to the Sun. The method is based on Shack Hartmann wavefront sensor data recorded over a large field-of-view with solar granulation and uses only measurements of differential image displacements from individual exposures, such that the measurements are not degraded by residual tip-tilt errors. We conclude that the proposed method allows good measurements when Frieds parameter r_0 is larger than about 7.5 cm for the ground layer and that these measurements should provide valuable information for site selection and multi-conjugate development for the future European Solar Telescope. A major limitation is the large field of view presently used for wavefront sensing, leading to uncomfortably large uncertainties in r_0 at 30 km distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا