ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping-induced quantum spin Hall insulator to superconductor transition

209   0   0.0 ( 0 )
 نشر من قبل Zhenjiu Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A unique property of a dynamically generated quantum spin Hall state are Goldstone modes that correspond to the long-wavelength fluctuations of the spin-orbit coupling order parameter whose topological Skyrmion excitations carry charge 2$e$. Within the model considered here, upon varying the chemical potential, we observe two transitions: An s-wave superconducting order parameter develops at a critical chemical potential $mu_{c1}$, corresponding to the excitation gap of pairs of fermions, and at $mu_{c2}$ the SO(3) order parameter of the quantum spin Hall state vanishes. Using negative-sign-free, large-scale quantum Monte Carlo simulations, we show that $mu_{c1}=mu_{c2}$ within our accuracy -- we can resolve dopings away from half filling down to $delta = 0.0017$. The length scale associated with the fluctuations of the quantum spin Hall order parameter grows down to our lowest doping, suggesting either a continuous or a weakly first-order transition. Contrary to mean-field expectations, the doping versus chemical potential curve is not linear, indicating a dynamical critical exponent $z > 2$ if the transition is continuous.



قيم البحث

اقرأ أيضاً

The pressure induced superconducting phase diagram is calculated for an extension of the periodic Anderson model (PAM) in the $ U = infty $ limit taking into account the effect of a nearest neighbor attractive interaction between f-electrons. We anal yze the role of the chemical potential compared to several plots of the f-band density of states and we also found a superconductor-insulator transition induced by pressure when the chemical potential crosses the hybridization gap.
A magnetic-field-driven transition from metallic- to semiconducting-type behavior in the basal-plane resistance takes place in highly oriented pyrolytic graphite at a field $H_c sim 1~$kOe applied along the hexagonal c-axis. The analysis of the data reveals a striking similarity between this transition and that measured in thin-film superconductors and Si MOSFETs. However, in contrast to those materials, the transition in graphite is observable at almost two orders of magnitude higher temperatures.
We show that the quasi-skutterudite superconductor Sr_3Ir_4Sn_{13} undergoes a structural transition from a simple cubic parent structure, the I-phase, to a superlattice variant, the I-phase, which has a lattice parameter twice that of the high tempe rature phase. We argue that the superlattice distortion is associated with a charge density wave transition of the conduction electron system and demonstrate that the superlattice transition temperature T* can be suppressed to zero by combining chemical and physical pressure. This enables the first comprehensive investigation of a superlattice quantum phase transition and its interplay with superconductivity in a cubic charge density wave system.
We determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling. For large enough X and positive U the model shows three phases. For large U the s ystem is in the spin-density wave phase already known in the usual Hubbard model. As U decreases, there is first a spin transition to a spontaneously dimerized bond-ordered wave phase and then a charge transition to a novel phase in which the dominant correlations at large distances correspond to an incommensurate singlet superconductor.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا