ﻻ يوجد ملخص باللغة العربية
We give the first polynomial-time approximation scheme (PTAS) for the stochastic load balancing problem when the job sizes follow Poisson distributions. This improves upon the 2-approximation algorithm due to Goel and Indyk (FOCS99). Moreover, our approximation scheme is an efficient PTAS that has a running time double exponential in $1/epsilon$ but nearly-linear in $n$, where $n$ is the number of jobs and $epsilon$ is the target error. Previously, a PTAS (not efficient) was only known for jobs that obey exponential distributions (Goel and Indyk, FOCS99). Our algorithm relies on several probabilistic ingredients including some (seemingly) new results on scaling and the so-called focusing effect of maximum of Poisson random variables which might be of independent interest.
In the online load balancing problem on related machines, we have a set of jobs (with different sizes) arriving online, and we need to assign each job to a machine immediately upon its arrival, so as to minimize the makespan, i.e., the maximum comple
Set function optimization is essential in AI and machine learning. We focus on a subadditive set function that generalizes submodularity, and examine the subadditivity of non-submodular functions. We also deal with a minimax subadditive load balancin
In the load balancing problem, introduced by Graham in the 1960s (SIAM J. of Appl. Math. 1966, 1969), jobs arriving online have to be assigned to machines so to minimize an objective defined on machine loads. A long line of work has addressed this pr
We consider the problem of deterministic load balancing of tokens in the discrete model. A set of $n$ processors is connected into a $d$-regular undirected network. In every time step, each processor exchanges some of its tokens with each of its neig
We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently in a distributed setting. We use the token dropping game as a tool to design an efficient distributed algorithm for stable orientations and more genera